Jonathan Edlund, Björn Östenson, Einar Heiberg, Håkan Arheden, Katarina Steding-Ehrenborg
{"title":"Exercise cardiovascular magnetic resonance shows improved diastolic filling by atrioventricular area difference in athletes and controls.","authors":"Jonathan Edlund, Björn Östenson, Einar Heiberg, Håkan Arheden, Katarina Steding-Ehrenborg","doi":"10.1152/japplphysiol.00446.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Hydraulic force, a novel mechanism shown to aid diastolic filling, can be calculated by assessing the geometrical relationship between the left ventricular and atrial short-axis areas (atrioventricular area difference, AVAD). During exercise both ventricular and atrial volumes change due to altered loading conditions compared to rest, but it is unknown to what extent this affects AVAD. The aim of this study was to investigate if AVAD differs when going from rest to exercise in sedentary controls and athletes. We included 13 sedentary controls and 20 endurance athletes to undergo cardiovascular magnetic resonance (CMR) imaging at rest and during moderate and vigorous exercise using a CMR-compatible ergometer. AVAD was calculated as the largest ventricular short-axis area minus the largest atrial short-axis area in end-diastole (ED) and end-systole (ES) as measured from CMR short-axis images. AVAD in ED increased during moderate exercise in both sedentary controls and athletes, thus aiding diastolic filling, but did not increase further during vigorous exercise. AVAD in ES was negative in both groups at rest and decreased further with increasing exercise intensity in sedentary controls, whereas athletes remained unchanged. In conclusion, results from AVAD in ED indicate the net hydraulic force to further augment diastolic filling during moderate exercise when compared to rest, providing new insights into the mechanism by which diastolic function increases during exercise.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00446.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydraulic force, a novel mechanism shown to aid diastolic filling, can be calculated by assessing the geometrical relationship between the left ventricular and atrial short-axis areas (atrioventricular area difference, AVAD). During exercise both ventricular and atrial volumes change due to altered loading conditions compared to rest, but it is unknown to what extent this affects AVAD. The aim of this study was to investigate if AVAD differs when going from rest to exercise in sedentary controls and athletes. We included 13 sedentary controls and 20 endurance athletes to undergo cardiovascular magnetic resonance (CMR) imaging at rest and during moderate and vigorous exercise using a CMR-compatible ergometer. AVAD was calculated as the largest ventricular short-axis area minus the largest atrial short-axis area in end-diastole (ED) and end-systole (ES) as measured from CMR short-axis images. AVAD in ED increased during moderate exercise in both sedentary controls and athletes, thus aiding diastolic filling, but did not increase further during vigorous exercise. AVAD in ES was negative in both groups at rest and decreased further with increasing exercise intensity in sedentary controls, whereas athletes remained unchanged. In conclusion, results from AVAD in ED indicate the net hydraulic force to further augment diastolic filling during moderate exercise when compared to rest, providing new insights into the mechanism by which diastolic function increases during exercise.
期刊介绍:
The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.