Evaluation of induced pluripotent stem cell differentiation into neural progenitor cell using Raman spectra derived from extracellular vesicles in culture supernatants.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of bioscience and bioengineering Pub Date : 2024-10-16 DOI:10.1016/j.jbiosc.2024.09.004
Kakuro Hirai, Hikaru Saito, Midori Kato, Masaharu Kiyama, Hiroko Hanzawa, Atsushi Nakane, Sayaka Sekiya, Kenji Yoshida, Akiyoshi Kishino, Atsushi Ikeda, Toru Kimura, Jun Takahashi, Shizu Takeda
{"title":"Evaluation of induced pluripotent stem cell differentiation into neural progenitor cell using Raman spectra derived from extracellular vesicles in culture supernatants.","authors":"Kakuro Hirai, Hikaru Saito, Midori Kato, Masaharu Kiyama, Hiroko Hanzawa, Atsushi Nakane, Sayaka Sekiya, Kenji Yoshida, Akiyoshi Kishino, Atsushi Ikeda, Toru Kimura, Jun Takahashi, Shizu Takeda","doi":"10.1016/j.jbiosc.2024.09.004","DOIUrl":null,"url":null,"abstract":"<p><p>Non-invasive cell culture monitoring technology is crucial to improve the manufacturing efficiency of cell products. We have found that extracellular vesicles (EVs) are secreted into the culture supernatants in the differentiation process from human induced pluripotent stem cells (iPSCs) to dopaminergic progenitor cells, and that the composition of EVs changes in accordance with the differentiation processes. In this study, we hypothesized that it is possible to evaluate the cultured cellular states by detecting compositional changes of EVs secreted from cultured cells with label-free Raman spectroscopy in a non-invasive manner. Therefore, Raman signal analysis derived from EV fractions isolated from culture supernatants throughout the differentiation process was conducted. iPSCs cultures were simultaneously implemented under a standard condition (control) and an artificial deviation condition inducing reductions in pluripotency by depleting FGF2 in culture medium (-FGF2), which is indispensable for maintaining the pluripotency. Subsequently, the differentiation step was conducted for each iPSCs culture under the same condition. As a result, it was found that under -FGF2, the expression level of the pluripotency marker NANOG decreased compared to that of the control and correlated with the identification results based on Raman signals with a correlation coefficient of 0.77. Lipid-derived Raman signals were extracted as identification factors, suggesting that changes in the lipid component of EV occur depending on the cellular states. From the above, we have found that the change in composition of EVs in the culture supernatant by detecting Raman signals would be a monitoring index of the cellular state of differentiation and pluripotency.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2024.09.004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-invasive cell culture monitoring technology is crucial to improve the manufacturing efficiency of cell products. We have found that extracellular vesicles (EVs) are secreted into the culture supernatants in the differentiation process from human induced pluripotent stem cells (iPSCs) to dopaminergic progenitor cells, and that the composition of EVs changes in accordance with the differentiation processes. In this study, we hypothesized that it is possible to evaluate the cultured cellular states by detecting compositional changes of EVs secreted from cultured cells with label-free Raman spectroscopy in a non-invasive manner. Therefore, Raman signal analysis derived from EV fractions isolated from culture supernatants throughout the differentiation process was conducted. iPSCs cultures were simultaneously implemented under a standard condition (control) and an artificial deviation condition inducing reductions in pluripotency by depleting FGF2 in culture medium (-FGF2), which is indispensable for maintaining the pluripotency. Subsequently, the differentiation step was conducted for each iPSCs culture under the same condition. As a result, it was found that under -FGF2, the expression level of the pluripotency marker NANOG decreased compared to that of the control and correlated with the identification results based on Raman signals with a correlation coefficient of 0.77. Lipid-derived Raman signals were extracted as identification factors, suggesting that changes in the lipid component of EV occur depending on the cellular states. From the above, we have found that the change in composition of EVs in the culture supernatant by detecting Raman signals would be a monitoring index of the cellular state of differentiation and pluripotency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of bioscience and bioengineering
Journal of bioscience and bioengineering 生物-生物工程与应用微生物
CiteScore
5.90
自引率
3.60%
发文量
144
审稿时长
51 days
期刊介绍: The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.
期刊最新文献
Application of a low acetate-producing strain of Tetragenococcus halophilus to soy sauce fermentation. Evaluation of induced pluripotent stem cell differentiation into neural progenitor cell using Raman spectra derived from extracellular vesicles in culture supernatants. Bioconversion of eicosapentaenoic acid into 5S,15S- and 5R,15R-dihydroxyeicosapentaenoic acids by double-dioxygenating 15S- and 15R-lipoxygenases. Positive impact of pyrocarbon and mechanical loading on cartilage-like tissue synthesis in a scaffold-free process. Optimization of bacteriophage propagation in high-yield continuous culture (cellstat) meeting the constraints of industrial manufacturing processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1