Hosta plantaginea (Lam.) Aschers flower modulates inflammation and amino acid metabolism by inhibiting NF-κB/MAPK/JAK-STAT/PI3K-Akt and AMPK pathways to alleviate benign prostatic hyperplasia in rats.

IF 4.8 2区 医学 Q1 CHEMISTRY, MEDICINAL Journal of ethnopharmacology Pub Date : 2024-10-19 DOI:10.1016/j.jep.2024.118970
Huilei Wang, Zhenqiang Mu, Jian Liang, Xiaomei Li, Li Yang, Junwei He
{"title":"Hosta plantaginea (Lam.) Aschers flower modulates inflammation and amino acid metabolism by inhibiting NF-κB/MAPK/JAK-STAT/PI3K-Akt and AMPK pathways to alleviate benign prostatic hyperplasia in rats.","authors":"Huilei Wang, Zhenqiang Mu, Jian Liang, Xiaomei Li, Li Yang, Junwei He","doi":"10.1016/j.jep.2024.118970","DOIUrl":null,"url":null,"abstract":"<p><strong>Ethnopharmacological relevance: </strong>Benign prostatic hyperplasia (BPH) is the most common urogenital disease in men with no definitive treatment. Inflammation, androgen imbalance, and oxidative stress play crucial roles in the pathogenesis of BPH. The flower of Hosta plantaginea (Lam.) Ascher is a pivotal medicinal plant in China, used to treat BPH. However, its effect and mechanism against BPH have not been clear.</p><p><strong>Aim of the study: </strong>Our aim was to decipher the pharmacodynamics and mechanisms of H. plantaginea flower against BPH.</p><p><strong>Materials and methods: </strong>The extract yields and HPLC-based chemoprofile of ethanolic extract (HP) and total flavonoid (TF) of H. plantaginea flowers were used as reference standard to ensure their quality. The testosterone propionate-induced BPH rat model was used to assess the effects of HP and TF. Protein expression, metabolomics, and network pharmacology analyses were performed.</p><p><strong>Results: </strong>Twenty constituents were identified in both HP and TF, with four quantitatively analyzed using the HPLC method. HP and TF demonstrated significant therapeutic effects on BPH, including reduced prostate size and prostatic index, improved pathological injury of prostate, as well as increased levels of testosterone, superoxide dismutase, glutathione, and glutathione peroxidase, along with decreased levels of dihydrotestosterone, 5 alpha-reductase, epidermal growth factor, TNF-α, IL-1β, IL-6, and malondialdehyde. Western blotting assay indicated that HP and TF prominently inhibited the protein expression of phosphorylated p65, IκBα, JNK, p38, Erk1/2, JAK1, STAT3, PI3K, Akt, and AMPKα1 in a dose-dependent manner. Integrating metabolomics and network pharmacology analyses revealed that HP and TF observably regulated 30 differential metabolites and 11 hub genes across the aforementioned pathways, which are closely associated with amino acid metabolism.</p><p><strong>Conclusion: </strong>The proposed comprehensive strategy of in vivo experiments, metabolomics, and network pharmacology studies has demonstrated that HP and TF could alleviate BPH injury in rats by suppressing inflammation, androgen imbalance, oxidative stress, and amino acid metabolism through the inhibition of NF-κB, MAPK, JAK-STAT, PI3K-Akt, and AMPK pathways, which provides novel insights into the potential of H. plantaginea flower as a treatment for BPH.</p>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jep.2024.118970","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ethnopharmacological relevance: Benign prostatic hyperplasia (BPH) is the most common urogenital disease in men with no definitive treatment. Inflammation, androgen imbalance, and oxidative stress play crucial roles in the pathogenesis of BPH. The flower of Hosta plantaginea (Lam.) Ascher is a pivotal medicinal plant in China, used to treat BPH. However, its effect and mechanism against BPH have not been clear.

Aim of the study: Our aim was to decipher the pharmacodynamics and mechanisms of H. plantaginea flower against BPH.

Materials and methods: The extract yields and HPLC-based chemoprofile of ethanolic extract (HP) and total flavonoid (TF) of H. plantaginea flowers were used as reference standard to ensure their quality. The testosterone propionate-induced BPH rat model was used to assess the effects of HP and TF. Protein expression, metabolomics, and network pharmacology analyses were performed.

Results: Twenty constituents were identified in both HP and TF, with four quantitatively analyzed using the HPLC method. HP and TF demonstrated significant therapeutic effects on BPH, including reduced prostate size and prostatic index, improved pathological injury of prostate, as well as increased levels of testosterone, superoxide dismutase, glutathione, and glutathione peroxidase, along with decreased levels of dihydrotestosterone, 5 alpha-reductase, epidermal growth factor, TNF-α, IL-1β, IL-6, and malondialdehyde. Western blotting assay indicated that HP and TF prominently inhibited the protein expression of phosphorylated p65, IκBα, JNK, p38, Erk1/2, JAK1, STAT3, PI3K, Akt, and AMPKα1 in a dose-dependent manner. Integrating metabolomics and network pharmacology analyses revealed that HP and TF observably regulated 30 differential metabolites and 11 hub genes across the aforementioned pathways, which are closely associated with amino acid metabolism.

Conclusion: The proposed comprehensive strategy of in vivo experiments, metabolomics, and network pharmacology studies has demonstrated that HP and TF could alleviate BPH injury in rats by suppressing inflammation, androgen imbalance, oxidative stress, and amino acid metabolism through the inhibition of NF-κB, MAPK, JAK-STAT, PI3K-Akt, and AMPK pathways, which provides novel insights into the potential of H. plantaginea flower as a treatment for BPH.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of ethnopharmacology
Journal of ethnopharmacology 医学-全科医学与补充医学
CiteScore
10.30
自引率
5.60%
发文量
967
审稿时长
77 days
期刊介绍: The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.
期刊最新文献
Effect and mechanism of Jinkui Shenqi Pill on preventing neural tube defects in mice based on network pharmacology. Combining virus-based affinity ultrafiltration method with serum pharmacochemistry to identify the antiviral pharmacodynamic substances in licorice. Hosta plantaginea (Lam.) Aschers flower modulates inflammation and amino acid metabolism by inhibiting NF-κB/MAPK/JAK-STAT/PI3K-Akt and AMPK pathways to alleviate benign prostatic hyperplasia in rats. Integrating metabolomics with network pharmacology to reveal the mechanism of Poria cocos in hyperuricemia treatment. The antiviral effect and potential mechanism of Houttuynia cordata Thunb. (HC) against coxsackievirus A4.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1