The mayfly Neocloeon triangulifer senses decreasing oxygen availability (PO2) and responds by reducing ion uptake and altering gene expression.

IF 2.8 2区 生物学 Q2 BIOLOGY Journal of Experimental Biology Pub Date : 2024-10-18 DOI:10.1242/jeb.247916
Jamie K Cochran, David B Buchwalter
{"title":"The mayfly Neocloeon triangulifer senses decreasing oxygen availability (PO2) and responds by reducing ion uptake and altering gene expression.","authors":"Jamie K Cochran, David B Buchwalter","doi":"10.1242/jeb.247916","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen availability is central to the energetic budget of aquatic animals and may vary naturally and/or in response to anthropogenic activities. Yet, we know little about how oxygen availability is linked to fundamental processes such as ion transport in aquatic insects. We hypothesized and observed that ion (22Na and 35SO4) uptake would be significantly decreased at O2 partial pressures below the mean Pcrit (5.4 kPa) where metabolic rates (MO2) are compromised, and ATP production is limited. However, we were surprised to observe marked reductions in ion uptake at oxygen partial pressures well above the Pcrit, where MO2 was stable. For example, SO4 uptake decreased by 51% at 11.7kPa, and 82% at the Pcrit (5.4kPa) while Na uptake decreased by 19% at 11.7kPa, and 60% at the Pcrit. Nymphs held for longer time periods at reduced PO2 exhibited stronger reductions in ion uptake rates. Fluids from whole body homogenates exhibited a 29% decrease in osmolality in the most hypoxic condition. The differential expression of atypical guanylyl cyclase (gcy-88e) in response to changing PO2 conditions provides evidence for its potential role as an oxygen sensor. Several ion transport genes (e.g., chloride channel and sodium-potassium ATPase) and hypoxia-associated genes (e.g., ldh and egl-9) were also impacted by decreased oxygen availability. Together, our work suggests that N. triangulifer can sense decreased oxygen availability and perhaps conserves energy accordingly, even when MO2 is not impacted.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.247916","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen availability is central to the energetic budget of aquatic animals and may vary naturally and/or in response to anthropogenic activities. Yet, we know little about how oxygen availability is linked to fundamental processes such as ion transport in aquatic insects. We hypothesized and observed that ion (22Na and 35SO4) uptake would be significantly decreased at O2 partial pressures below the mean Pcrit (5.4 kPa) where metabolic rates (MO2) are compromised, and ATP production is limited. However, we were surprised to observe marked reductions in ion uptake at oxygen partial pressures well above the Pcrit, where MO2 was stable. For example, SO4 uptake decreased by 51% at 11.7kPa, and 82% at the Pcrit (5.4kPa) while Na uptake decreased by 19% at 11.7kPa, and 60% at the Pcrit. Nymphs held for longer time periods at reduced PO2 exhibited stronger reductions in ion uptake rates. Fluids from whole body homogenates exhibited a 29% decrease in osmolality in the most hypoxic condition. The differential expression of atypical guanylyl cyclase (gcy-88e) in response to changing PO2 conditions provides evidence for its potential role as an oxygen sensor. Several ion transport genes (e.g., chloride channel and sodium-potassium ATPase) and hypoxia-associated genes (e.g., ldh and egl-9) were also impacted by decreased oxygen availability. Together, our work suggests that N. triangulifer can sense decreased oxygen availability and perhaps conserves energy accordingly, even when MO2 is not impacted.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蜉蝣 Neocloeon triangulifer 能感知氧气供应量(PO2)的减少,并通过减少离子吸收和改变基因表达做出反应。
氧气供应是水生动物能量预算的核心,可能会自然变化和/或因人为活动而变化。然而,我们对氧气供应如何与水生昆虫的离子转运等基本过程相关联知之甚少。我们假设并观察到,当氧气分压低于平均 Pcrit(5.4 kPa)时,离子(22Na 和 35SO4)的吸收将显著减少,在这种情况下,新陈代谢率(MO2)会受到影响,ATP 的产生也会受到限制。然而,我们惊讶地发现,在氧分压远高于平均氧分压的情况下,离子吸收量明显减少,而此时 MO2 保持稳定。例如,在 11.7kPa 氧分压下,SO4 的吸收量减少了 51%,而在 5.4kPa 氧分压下则减少了 82%;在 11.7kPa 氧分压下,Na 的吸收量减少了 19%,而在 5.4kPa 氧分压下则减少了 60%。在降低的 PO2 条件下长时间保持的蛹表现出更强的离子吸收率下降。在最缺氧的条件下,来自全身匀浆的液体的渗透压降低了 29%。非典型鸟苷酸环化酶(gcy-88e)在 PO2 变化条件下的不同表达为其作为氧传感器的潜在作用提供了证据。一些离子转运基因(如氯离子通道和钠-钾 ATP 酶)和缺氧相关基因(如 ldh 和 egl-9)也受到氧气供应减少的影响。总之,我们的研究结果表明,三角帆藻能感知氧气供应的减少,即使在 MO2 不受影响的情况下,也能相应地保存能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
期刊最新文献
How do fish miss? Attack strategies of threespine stickleback capturing non-evasive prey. Hypertonic water reabsorption with a parallel-current system via the glandular and saccular renal tubules of Ruditapes philippinarum. Skittering locomotion in cricket frogs: a form of porpoising. Investigating in vivo force and work production of rat medial gastrocnemius at varying locomotor speeds using a muscle avatar. Bridging the divide in organismal physiology: a case for the integration of behaviour as a physiological process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1