Apolipoprotein B gene expression and regulation in relation to Alzheimer's disease pathophysiology.

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Lipid Research Pub Date : 2024-10-10 DOI:10.1016/j.jlr.2024.100667
Gabriel Aumont-Rodrigue, Cynthia Picard, Anne Labonté, Judes Poirier
{"title":"Apolipoprotein B gene expression and regulation in relation to Alzheimer's disease pathophysiology.","authors":"Gabriel Aumont-Rodrigue, Cynthia Picard, Anne Labonté, Judes Poirier","doi":"10.1016/j.jlr.2024.100667","DOIUrl":null,"url":null,"abstract":"<p><p>Apolipoprotein B (APOB), a receptor-binding protein present in cholesterol-rich lipoproteins, has been implicated in Alzheimer's disease (AD). High levels of APOB-containing low-density lipoproteins (LDL) are linked to the pathogenesis of both early-onset familial and late-onset sporadic AD. Rare coding mutations in the APOB gene are associated with familial AD, suggesting a role for APOB-bound lipoproteins in the central nervous system. This research explores APOB gene regulation across the AD spectrum using four cohorts: BRAINEAC (elderly control brains), DBCBB (controls, AD brains), ROSMAP (controls, MCI, AD brains), and ADNI (control, MCI, AD clinical subjects). APOB protein levels, measured via mass spectrometry and ELISA, positively correlated with AD pathology indices and cognition, while APOB mRNA levels showed negative correlations. Brain APOB protein levels are also correlated with cortical Aβ levels. A common coding variant in the APOB gene locus affected its expression but didn't impact AD risk or brain cholesterol concentrations, except for 24-S-hydroxycholesterol. Polymorphisms in the CYP27A1 gene, notably rs4674344, were associated with APOB protein levels. A negative correlation was observed between brain APOB gene expression and AD biomarker levels. CSF APOB correlated with Tau pathology in presymptomatic subjects, while cortical APOB was strongly associated with cortical Aβ deposition in late-stage AD. The study discusses the potential link between blood-brain barrier dysfunction and AD symptoms in relation to APOB neurobiology. Overall, APOB's involvement in lipoprotein metabolism appears to influence AD pathology across different stages of the disease.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100667"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100667","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Apolipoprotein B (APOB), a receptor-binding protein present in cholesterol-rich lipoproteins, has been implicated in Alzheimer's disease (AD). High levels of APOB-containing low-density lipoproteins (LDL) are linked to the pathogenesis of both early-onset familial and late-onset sporadic AD. Rare coding mutations in the APOB gene are associated with familial AD, suggesting a role for APOB-bound lipoproteins in the central nervous system. This research explores APOB gene regulation across the AD spectrum using four cohorts: BRAINEAC (elderly control brains), DBCBB (controls, AD brains), ROSMAP (controls, MCI, AD brains), and ADNI (control, MCI, AD clinical subjects). APOB protein levels, measured via mass spectrometry and ELISA, positively correlated with AD pathology indices and cognition, while APOB mRNA levels showed negative correlations. Brain APOB protein levels are also correlated with cortical Aβ levels. A common coding variant in the APOB gene locus affected its expression but didn't impact AD risk or brain cholesterol concentrations, except for 24-S-hydroxycholesterol. Polymorphisms in the CYP27A1 gene, notably rs4674344, were associated with APOB protein levels. A negative correlation was observed between brain APOB gene expression and AD biomarker levels. CSF APOB correlated with Tau pathology in presymptomatic subjects, while cortical APOB was strongly associated with cortical Aβ deposition in late-stage AD. The study discusses the potential link between blood-brain barrier dysfunction and AD symptoms in relation to APOB neurobiology. Overall, APOB's involvement in lipoprotein metabolism appears to influence AD pathology across different stages of the disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
载脂蛋白 B 基因表达和调控与阿尔茨海默病病理生理学的关系。
载脂蛋白 B(APOB)是一种存在于富含胆固醇的脂蛋白中的受体结合蛋白,与阿尔茨海默病(AD)有关。含有高水平 APOB 的低密度脂蛋白(LDL)与早发家族性和晚发散发性阿尔茨海默病的发病机制有关。APOB 基因的罕见编码突变与家族性注意力缺失症有关,这表明与 APOB 结合的脂蛋白在中枢神经系统中发挥作用。这项研究利用四个队列探索了AD谱系中的APOB基因调控:BRAINEAC(老年对照组大脑)、DBCBB(对照组、AD 大脑)、ROSMAP(对照组、MCI、AD 大脑)和 ADNI(对照组、MCI、AD 临床受试者)。通过质谱法和酶联免疫吸附法测量的APOB蛋白水平与AD病理指数和认知能力呈正相关,而APOB mRNA水平则呈负相关。大脑 APOB 蛋白水平也与皮质 Aβ 水平相关。APOB基因位点的一个常见编码变异会影响其表达,但不会影响AD风险或脑胆固醇浓度,24-S-羟基胆固醇除外。CYP27A1基因的多态性,特别是rs4674344,与APOB蛋白水平有关。大脑 APOB 基因表达与 AD 生物标志物水平之间呈负相关。CSF APOB 与无症状受试者的 Tau 病理学相关,而皮质 APOB 与 AD 晚期的皮质 Aβ 沉积密切相关。该研究讨论了血脑屏障功能障碍与AD症状之间的潜在联系,以及与APOB神经生物学的关系。总之,APOB参与脂蛋白代谢似乎会影响AD不同阶段的病理变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
期刊最新文献
In memoriam: Ana Jonas, PhD. Lysophosphatidylethanolamine improves diastolic dysfunction by alleviating mitochondrial injury in the aging heart. Chiral Clues to Lipid Identity. The antidepressant drug sertraline is a novel inhibitor of yeast Pah1 and human lipin 1 phosphatidic acid phosphatases. The bile acid chenodeoxycholic acid associates with reduced stroke in humans and mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1