Ming Yang, Kui Gu, Qiang Xu, Renqiao Wen, Jinpeng Li, Changyu Zhou, Yu Zhao, Miwan Shi, Yuan Weng, Boyan Guo, Changwei Lei, Yong Sun, Hongning Wang
{"title":"Recombinant Lactococcus lactis secreting FliC protein nanobodies for resistance against Salmonella enteritidis invasion in the intestinal tract.","authors":"Ming Yang, Kui Gu, Qiang Xu, Renqiao Wen, Jinpeng Li, Changyu Zhou, Yu Zhao, Miwan Shi, Yuan Weng, Boyan Guo, Changwei Lei, Yong Sun, Hongning Wang","doi":"10.1186/s12951-024-02904-8","DOIUrl":null,"url":null,"abstract":"<p><p>Salmonella Enteritidis is a major foodborne pathogen throughout the world and the increase in antibiotic resistance of Salmonella poses a significant threat to public safety. Natural nanobodies exhibit high affinity, thermal stability, ease of production, and notably higher diversity, making them widely applicable for the treatment of viral and bacterial infections. Recombinant expression using Lactococcus lactis leverages both acid resistance and mucosal colonization properties of these bacteria, allowing the effective expression of exogenous proteins for therapeutic effects. In this study, nine specific nanobodies against the flagellar protein FliC were identified and expressed. In vitro experiments demonstrated that FliC-Nb-76 effectively inhibited the motility of S. Enteritidis and inhibited its adhesion to and invasion of HIEC-6, RAW264.7, and chicken intestinal epithelial cells. Additionally, a recombinant L. lactis strain secreting the nanobody, L. lactis-Nb76, was obtained. Animal experiments confirmed that it could significantly reduce the mortality rates of chickens infected with S. Enteritidis, together with alleviating the inflammatory response caused by the pathogen. These results provide a novel strategy for the treatment of antibiotic-resistant S. Enteritidis infection in the intestinal tract.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481460/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02904-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salmonella Enteritidis is a major foodborne pathogen throughout the world and the increase in antibiotic resistance of Salmonella poses a significant threat to public safety. Natural nanobodies exhibit high affinity, thermal stability, ease of production, and notably higher diversity, making them widely applicable for the treatment of viral and bacterial infections. Recombinant expression using Lactococcus lactis leverages both acid resistance and mucosal colonization properties of these bacteria, allowing the effective expression of exogenous proteins for therapeutic effects. In this study, nine specific nanobodies against the flagellar protein FliC were identified and expressed. In vitro experiments demonstrated that FliC-Nb-76 effectively inhibited the motility of S. Enteritidis and inhibited its adhesion to and invasion of HIEC-6, RAW264.7, and chicken intestinal epithelial cells. Additionally, a recombinant L. lactis strain secreting the nanobody, L. lactis-Nb76, was obtained. Animal experiments confirmed that it could significantly reduce the mortality rates of chickens infected with S. Enteritidis, together with alleviating the inflammatory response caused by the pathogen. These results provide a novel strategy for the treatment of antibiotic-resistant S. Enteritidis infection in the intestinal tract.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.