Tsg101 knockout in the mammary gland leads to a decrease in small extracellular vesicles in milk from C57BL/6J dams and contributes to leakiness of the gut mucosa and reduced postnatal weight gain in suckling pups
{"title":"Tsg101 knockout in the mammary gland leads to a decrease in small extracellular vesicles in milk from C57BL/6J dams and contributes to leakiness of the gut mucosa and reduced postnatal weight gain in suckling pups","authors":"Javaria Munir , Mahrou Sadri , Janos Zempleni","doi":"10.1016/j.jnutbio.2024.109782","DOIUrl":null,"url":null,"abstract":"<div><div>Human milk contains 2.2 ± 1.5×10<sup>11</sup> small extracellular vesicles (sEVs) per milliliter and human infants consume 1.7×10<sup>14</sup> milk sEVs (sMEVs) daily in 800 mL milk. Infant formula contains trace amounts of sMEVs. To date, eight adverse effects of milk depletion and five beneficial effects of sMEV supplementation have been reported including studies in infants and neonate mice. Formula-fed infants do not realize the benefits of sMEVs. Most of the phenotyping studies reported to date have the limitation that sMEV depletion and supplementation were initiated after mice were weaned. Here, we used a genetics approach for assessing effects of sMEV depletion on the development of suckling mice. Newborn C57BL/6J pups were fostered to Tumor Susceptibility Gene 101 (<em>Tsg101</em>) mammary-specific knockout (KO) dams or C57BL/6J dams (controls) in synchronized pregnancies. <em>Tsg101</em> KO was associated with an 80% decrease of sMEVs. Postnatal weight gain and gut health (histology, morphology, and barrier function) were assessed until weaning at age three weeks. We observed a significant decrease in weight gain, length of small intestine, villi height, crypt depth, and intestinal barrier function in male and female pups fostered to <em>Tsg101</em> dams compared to pups fostered to control dams. The effect size varied between 11 and 32 percent. Maternal <em>Tsg101</em> KO did not affect the dams’ health, content of macronutrients and dry mass of milk and had no effect on the amount of milk consumed by pups. We conclude that sMEVs are important for growth and gut health in neonate mice.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"135 ","pages":"Article 109782"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324002134","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human milk contains 2.2 ± 1.5×1011 small extracellular vesicles (sEVs) per milliliter and human infants consume 1.7×1014 milk sEVs (sMEVs) daily in 800 mL milk. Infant formula contains trace amounts of sMEVs. To date, eight adverse effects of milk depletion and five beneficial effects of sMEV supplementation have been reported including studies in infants and neonate mice. Formula-fed infants do not realize the benefits of sMEVs. Most of the phenotyping studies reported to date have the limitation that sMEV depletion and supplementation were initiated after mice were weaned. Here, we used a genetics approach for assessing effects of sMEV depletion on the development of suckling mice. Newborn C57BL/6J pups were fostered to Tumor Susceptibility Gene 101 (Tsg101) mammary-specific knockout (KO) dams or C57BL/6J dams (controls) in synchronized pregnancies. Tsg101 KO was associated with an 80% decrease of sMEVs. Postnatal weight gain and gut health (histology, morphology, and barrier function) were assessed until weaning at age three weeks. We observed a significant decrease in weight gain, length of small intestine, villi height, crypt depth, and intestinal barrier function in male and female pups fostered to Tsg101 dams compared to pups fostered to control dams. The effect size varied between 11 and 32 percent. Maternal Tsg101 KO did not affect the dams’ health, content of macronutrients and dry mass of milk and had no effect on the amount of milk consumed by pups. We conclude that sMEVs are important for growth and gut health in neonate mice.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.