{"title":"Kaempferol promotes osteogenic differentiation in bone marrow mesenchymal stem cells by inhibiting CAV-1.","authors":"Yingxue Li, Ying Wang, Qian Liu, Shuiying Lv, Yali Wang, Huanhuan Zhang, Qiuhong Zhao, Lei Shang","doi":"10.1186/s13018-024-05174-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Our study focused on the effects and molecular mechanisms of kaempferol, a major active component of Eucommia ulmoides Oliver (EUO), on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).</p><p><strong>Methods: </strong>Target molecules for EUO, osteoarthritis, and osteogenic differentiation were identified through network pharmacology analysis. BMSCs were isolated and treated with various concentrations of kaempferol. Optimal concentration was determined through MTT assays. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) and Alizarin Red S staining, while osteogenic markers (Collagen I, RUNX2, and OPN) and CAV-1 expression were analyzed using RT-qPCR and Western blot. The effects of combined treatment with kaempferol and an overexpression vector for CAV-1 (oe-CAV-1) on osteogenic differentiation were also observed.</p><p><strong>Results: </strong>Network pharmacology analysis identified kaempferol as the primary active component influencing CAV-1 targeted in subsequent experiments. It was found that 10 µM kaempferol was optimal for treating BMSCs. Post-treatment, significant increases in ALP activity and calcium deposition were observed, along with elevated expression of osteogenic markers, and decreased CAV-1. Overexpression of CAV-1 significantly reversed the promotive effects of kaempferol on BMSC osteogenic differentiation, effectively inhibiting the process.</p><p><strong>Conclusion: </strong>Collectively, kaempferol promotes osteogenic differentiation in BMSCs by inhibiting CAV-1 expression.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"19 1","pages":"678"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-024-05174-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Our study focused on the effects and molecular mechanisms of kaempferol, a major active component of Eucommia ulmoides Oliver (EUO), on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).
Methods: Target molecules for EUO, osteoarthritis, and osteogenic differentiation were identified through network pharmacology analysis. BMSCs were isolated and treated with various concentrations of kaempferol. Optimal concentration was determined through MTT assays. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) and Alizarin Red S staining, while osteogenic markers (Collagen I, RUNX2, and OPN) and CAV-1 expression were analyzed using RT-qPCR and Western blot. The effects of combined treatment with kaempferol and an overexpression vector for CAV-1 (oe-CAV-1) on osteogenic differentiation were also observed.
Results: Network pharmacology analysis identified kaempferol as the primary active component influencing CAV-1 targeted in subsequent experiments. It was found that 10 µM kaempferol was optimal for treating BMSCs. Post-treatment, significant increases in ALP activity and calcium deposition were observed, along with elevated expression of osteogenic markers, and decreased CAV-1. Overexpression of CAV-1 significantly reversed the promotive effects of kaempferol on BMSC osteogenic differentiation, effectively inhibiting the process.
Conclusion: Collectively, kaempferol promotes osteogenic differentiation in BMSCs by inhibiting CAV-1 expression.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.