Distribution-free prediction intervals with conformal prediction for acoustical estimation.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS Journal of the Acoustical Society of America Pub Date : 2024-10-01 DOI:10.1121/10.0032452
Ishan Khurjekar, Peter Gerstoft
{"title":"Distribution-free prediction intervals with conformal prediction for acoustical estimation.","authors":"Ishan Khurjekar, Peter Gerstoft","doi":"10.1121/10.0032452","DOIUrl":null,"url":null,"abstract":"<p><p>Acoustical parameter estimation is a routine task in many domains. The performance of existing estimation methods is affected by external uncertainty, yet the methods provide no measure of confidence in the estimates. Hence, it is crucial to quantify estimate uncertainty before real-world deployment. Conformal prediction (CP) generates statistically valid prediction intervals for any estimation model using calibration data; a limitation is that calibration data needed by CP must come from the same distribution as the test-time data. In this work, we propose to use CP to obtain statistically valid uncertainty intervals for acoustical parameter estimation using a data-driven model or an analytical model without training data. We consider direction-of-arrival estimation and localization of sources. The performance is validated on plane wave data with different sources of uncertainty, including ambient noise, interference, and sensor location uncertainty. The application of CP for data-driven and traditional propagation models is demonstrated. Results show that CP can be used for statistically valid uncertainty quantification with proper calibration data.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0032452","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustical parameter estimation is a routine task in many domains. The performance of existing estimation methods is affected by external uncertainty, yet the methods provide no measure of confidence in the estimates. Hence, it is crucial to quantify estimate uncertainty before real-world deployment. Conformal prediction (CP) generates statistically valid prediction intervals for any estimation model using calibration data; a limitation is that calibration data needed by CP must come from the same distribution as the test-time data. In this work, we propose to use CP to obtain statistically valid uncertainty intervals for acoustical parameter estimation using a data-driven model or an analytical model without training data. We consider direction-of-arrival estimation and localization of sources. The performance is validated on plane wave data with different sources of uncertainty, including ambient noise, interference, and sensor location uncertainty. The application of CP for data-driven and traditional propagation models is demonstrated. Results show that CP can be used for statistically valid uncertainty quantification with proper calibration data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于声学估算的保形预测无分布预测区间。
声学参数估计是许多领域的常规任务。现有估算方法的性能会受到外部不确定性的影响,但这些方法无法提供估算结果的置信度。因此,在实际应用之前量化估算的不确定性至关重要。共形预测(CP)可利用校准数据为任何估计模型生成统计上有效的预测区间;其局限性在于,共形预测所需的校准数据必须与测试时间数据来自相同的分布。在这项工作中,我们建议使用 CP 来获得声学参数估计的统计有效不确定性区间,使用数据驱动模型或分析模型,无需训练数据。我们考虑了声源的到达方向估计和定位。我们在具有不同不确定性来源(包括环境噪声、干扰和传感器位置不确定性)的平面波数据上对其性能进行了验证。演示了 CP 在数据驱动和传统传播模型中的应用。结果表明,有了适当的校准数据,CP 可用于统计有效的不确定性量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
期刊最新文献
Influence of variable sound-absorbing devices on room acoustical parameters of reverberation and intelligibility in medium-to-large multipurpose halls. Integer multi-wavelength gradient phase metagrating for perfect refraction: Phase choice freedom in supercella). Measurement of ocean currents by seafloor distributed optical-fiber acoustic sensing. Neville Fletcher's vibrant valve voyage. Office soundscape assessment: A model of acoustic environment perception in open-plan officesa).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1