Recommendations on bioacoustical metrics relevant for regulating exposure to anthropogenic underwater sounda).

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS Journal of the Acoustical Society of America Pub Date : 2024-10-01 DOI:10.1121/10.0028586
Klaus Lucke, Alexander O MacGillivray, Michele B Halvorsen, Michael A Ainslie, David G Zeddies, Joseph A Sisneros
{"title":"Recommendations on bioacoustical metrics relevant for regulating exposure to anthropogenic underwater sounda).","authors":"Klaus Lucke, Alexander O MacGillivray, Michele B Halvorsen, Michael A Ainslie, David G Zeddies, Joseph A Sisneros","doi":"10.1121/10.0028586","DOIUrl":null,"url":null,"abstract":"<p><p>Metrics to be used in noise impact assessment must integrate the physical acoustic characteristics of the sound field with relevant biology of animals. Several metrics have been established to determine and regulate underwater noise exposure to aquatic fauna. However, recent advances in understanding cause-effect relationships indicate that additional metrics are needed to fully describe and quantify the impact of sound fields on aquatic fauna. Existing regulations have primarily focused on marine mammals and are based on the dichotomy of sound types as being either impulsive or non-impulsive. This classification of sound types, however, is overly simplistic and insufficient for adequate impact assessments of sound on animals. It is recommended that the definition of impulsiveness be refined by incorporating kurtosis as an additional parameter and applying an appropriate conversion factor. Auditory frequency weighting functions, which scale the importance of particular sound frequencies to account for an animal's sensitivity to those frequencies, should be applied. Minimum phase filters are recommended for calculating weighted sound pressure. Temporal observation windows should be reported as signal duration influences its detectability by animals. Acknowledging that auditory integration time differs across species and is frequency dependent, standardized temporal integration windows are proposed for various signal types.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0028586","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Metrics to be used in noise impact assessment must integrate the physical acoustic characteristics of the sound field with relevant biology of animals. Several metrics have been established to determine and regulate underwater noise exposure to aquatic fauna. However, recent advances in understanding cause-effect relationships indicate that additional metrics are needed to fully describe and quantify the impact of sound fields on aquatic fauna. Existing regulations have primarily focused on marine mammals and are based on the dichotomy of sound types as being either impulsive or non-impulsive. This classification of sound types, however, is overly simplistic and insufficient for adequate impact assessments of sound on animals. It is recommended that the definition of impulsiveness be refined by incorporating kurtosis as an additional parameter and applying an appropriate conversion factor. Auditory frequency weighting functions, which scale the importance of particular sound frequencies to account for an animal's sensitivity to those frequencies, should be applied. Minimum phase filters are recommended for calculating weighted sound pressure. Temporal observation windows should be reported as signal duration influences its detectability by animals. Acknowledging that auditory integration time differs across species and is frequency dependent, standardized temporal integration windows are proposed for various signal types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于调节人为水下声暴露的生物声学指标的建议a)。
用于噪声影响评估的指标必须将声场的物理声学特性与动物的相关生物学特性结合起来。目前已经制定了一些指标来确定和管理水下噪声对水生动物的影响。然而,最近在理解因果关系方面取得的进展表明,还需要更多的指标来全面描述和量化声场对水生动物的影响。现有法规主要针对海洋哺乳动物,并将声音类型分为脉冲和非脉冲两种。然而,这种声音类型的划分过于简单,不足以充分评估声音对动物的影响。建议将峰度作为附加参数,并采用适当的换算系数来完善冲动性的定义。应采用听觉频率加权函数,根据动物对特定声音频率的敏感度来衡量这些频率的重要性。建议使用最小相位滤波器计算加权声压。应报告时间观察窗口,因为信号持续时间会影响动物的可探测性。由于不同物种的听觉整合时间不同,而且与频率有关,因此建议针对不同信号类型使用标准化的时间整合窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
期刊最新文献
Influence of variable sound-absorbing devices on room acoustical parameters of reverberation and intelligibility in medium-to-large multipurpose halls. Integer multi-wavelength gradient phase metagrating for perfect refraction: Phase choice freedom in supercella). Measurement of ocean currents by seafloor distributed optical-fiber acoustic sensing. Neville Fletcher's vibrant valve voyage. Office soundscape assessment: A model of acoustic environment perception in open-plan officesa).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1