Relay strip intercropping of soybeans and maize achieves high net ecosystem economic benefits by boosting land output and alleviating greenhouse gas emissions.
Background: Cereal-legume intercropping provides a solution for achieving global food security, but the mechanism of greenhouse gas emissions and net ecosystem economic benefits of maize-soybean relay intercropping are poorly understood. Hence, we conducted a two-factor experiment to investigate the effects of cropping systems, containing maize-soybean relay intercropping (IMS), monoculture maize (M) and monoculture soybean (S), as well as three nitrogen levels at 0 (N0), 180 (N1), 240 (N2) kg N ha-1 on crop grain yield, greenhouse gas emissions, soil carbon stock and net ecosystem economic benefit (NEEB).
Results: The average grain yield of IMS (7.7 t ha-1) increased by 28.5% and 242.4% compared with M (6.0 t ha-1) and S (2.2 t ha-1). The land equivalent ratio (LER) of IMS was 2.0, which was mainly contributed by maize (partial LER: 1.2) rather than soybean (partial LER: 0.8). Although the total grain yield of IMS remarkably enhanced by 43.6% and 45.5% in N1 and N2 contrast in N0, the LER was 37.5% and 38.6% lower in N1 and N2 than in N0. The net global warming potential (GWP) of maize and soybean was 11.6% and 1.8% lower in IMS than in the corresponding monoculture, which resulted from a decline in GWP and enhanced soil organic carbon stock rate. Moreover, NEEB was 133.5% higher in IMS (14 032.0 Chinese yuan per year) than in M, mainly resulting from an increase in total economic gains and a decline in GWP cost. A more robust response in yield gain rather than total costs to N inputs of IMS led to 46.8% and 48.3% higher NEEB in N1 and N2 than in N0.
期刊介绍:
The Journal of the Science of Food and Agriculture publishes peer-reviewed original research, reviews, mini-reviews, perspectives and spotlights in these areas, with particular emphasis on interdisciplinary studies at the agriculture/ food interface.
Published for SCI by John Wiley & Sons Ltd.
SCI (Society of Chemical Industry) is a unique international forum where science meets business on independent, impartial ground. Anyone can join and current Members include consumers, business people, environmentalists, industrialists, farmers, and researchers. The Society offers a chance to share information between sectors as diverse as food and agriculture, pharmaceuticals, biotechnology, materials, chemicals, environmental science and safety. As well as organising educational events, SCI awards a number of prestigious honours and scholarships each year, publishes peer-reviewed journals, and provides Members with news from their sectors in the respected magazine, Chemistry & Industry .
Originally established in London in 1881 and in New York in 1894, SCI is a registered charity with Members in over 70 countries.