Mingbo Peng, Tianjing Wang, Yujie Li, Zheng Zhang, Cuihong Wan
{"title":"Mapping Start Codons of Small Open Reading Frames by N-Terminomics Approach.","authors":"Mingbo Peng, Tianjing Wang, Yujie Li, Zheng Zhang, Cuihong Wan","doi":"10.1016/j.mcpro.2024.100860","DOIUrl":null,"url":null,"abstract":"<p><p>sORF-encoded peptides (SEPs) refer to proteins encoded by small open reading frames (sORFs) with a length of less than 100 amino acids, which play an important role in various life activities. Analysis of known SEPs showed that using non-canonical initiation codons of SEPs was more common. However, the current analysis of SEP sequences mainly relies on bioinformatics prediction, and most of them use AUG as the start site, which may not be completely correct for SEPs. Chemical labeling was used to systematically analyze the N-terminal sequences of SEPs to accurately define the start sites of SEPs. By comparison, we found that dimethylation and guanidinylation are more efficient than acetylation. The ACN precipitation and heating precipitation performed better in SEP enrichment. As an N-terminal peptide enrichment material, Hexadhexaldehyde was superior to CNBr-activated agarose and NHS-activated agarose. Combining these methods, we identified 128 SEPs with 131 N-terminal sequences. Among them, two-thirds are novel N-terminal sequences, and most of them start from the 11-31st amino acids of the original sequence. Partial novel N-termini were produced by proteolysis or signal peptide removal. Some SEPs' transcription start sites were corrected to be non-AUG start codons. One novel start codon was validated using GFP-tag vectors. These results demonstrated that the chemical labeling approaches would be beneficial for identifying the start codons of sORFs and the real N-terminal of their encoded peptides, which helps better understand the characterization of SEPs.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100860"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100860","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
sORF-encoded peptides (SEPs) refer to proteins encoded by small open reading frames (sORFs) with a length of less than 100 amino acids, which play an important role in various life activities. Analysis of known SEPs showed that using non-canonical initiation codons of SEPs was more common. However, the current analysis of SEP sequences mainly relies on bioinformatics prediction, and most of them use AUG as the start site, which may not be completely correct for SEPs. Chemical labeling was used to systematically analyze the N-terminal sequences of SEPs to accurately define the start sites of SEPs. By comparison, we found that dimethylation and guanidinylation are more efficient than acetylation. The ACN precipitation and heating precipitation performed better in SEP enrichment. As an N-terminal peptide enrichment material, Hexadhexaldehyde was superior to CNBr-activated agarose and NHS-activated agarose. Combining these methods, we identified 128 SEPs with 131 N-terminal sequences. Among them, two-thirds are novel N-terminal sequences, and most of them start from the 11-31st amino acids of the original sequence. Partial novel N-termini were produced by proteolysis or signal peptide removal. Some SEPs' transcription start sites were corrected to be non-AUG start codons. One novel start codon was validated using GFP-tag vectors. These results demonstrated that the chemical labeling approaches would be beneficial for identifying the start codons of sORFs and the real N-terminal of their encoded peptides, which helps better understand the characterization of SEPs.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes