A virulent milRNA inhibits host immunity by silencing a host receptor-like kinase MaLYK3 and facilitates infection by Fusarium oxysporum f. sp. cubense.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Molecular plant pathology Pub Date : 2024-10-01 DOI:10.1111/mpp.70016
Jiahui He, Jiaqi Zhong, Longqi Jin, Yike Long, Junjian Situ, Chengcheng He, Guanghui Kong, Zide Jiang, Minhui Li
{"title":"A virulent milRNA inhibits host immunity by silencing a host receptor-like kinase MaLYK3 and facilitates infection by Fusarium oxysporum f. sp. cubense.","authors":"Jiahui He, Jiaqi Zhong, Longqi Jin, Yike Long, Junjian Situ, Chengcheng He, Guanghui Kong, Zide Jiang, Minhui Li","doi":"10.1111/mpp.70016","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNA-like RNAs (milRNAs) play a significant role in the infection process by plant-pathogenic fungi. However, the specific functions and regulatory mechanisms of fungal milRNAs remain insufficiently elucidated. This study investigated the function of Foc-milR138, an infection-induced milRNA secreted by Fusarium oxysporum f. sp. cubense (Foc), which is the causal agent of Fusarium wilt of banana. Initially, through precursor gene knockout and phenotypic assessments, we confirmed that Foc-milR138 acts as a virulent milRNA prominently upregulated during the early stages of Foc infection. Subsequent bioinformatic analyses and transient expression assays in Nicotiana benthamiana leaves identified a host receptor-like kinase gene, MaLYK3, as the direct target of Foc-milR138. Functional investigations of MaLYK3 revealed its pivotal role in triggering immune responses of N. benthamiana by upregulating a suite of resistance genes, bolstering reactive oxygen species (ROS) accumulation and callose deposition, thereby fortifying disease resistance. This response was markedly subdued upon co-expression with Foc-milR138. Expression pattern analysis further verified the specific suppression of MaLYK3 by Foc-milR138 during the early root infection by Foc. In conclusion, Foc secretes a virulent milRNA (Foc-milR138) to enter the host banana cells and inhibit the expression of the plant surface receptor-like kinase MaLYK3, subverting the disease resistance activated by MaLYK3, and ultimately facilitating pathogen invasion. These findings shed light on the roles of fungal milRNAs and their targets in resistance and pathogenicity, offering promising avenues for the development of disease-resistant banana cultivars.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 10","pages":"e70016"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70016","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNA-like RNAs (milRNAs) play a significant role in the infection process by plant-pathogenic fungi. However, the specific functions and regulatory mechanisms of fungal milRNAs remain insufficiently elucidated. This study investigated the function of Foc-milR138, an infection-induced milRNA secreted by Fusarium oxysporum f. sp. cubense (Foc), which is the causal agent of Fusarium wilt of banana. Initially, through precursor gene knockout and phenotypic assessments, we confirmed that Foc-milR138 acts as a virulent milRNA prominently upregulated during the early stages of Foc infection. Subsequent bioinformatic analyses and transient expression assays in Nicotiana benthamiana leaves identified a host receptor-like kinase gene, MaLYK3, as the direct target of Foc-milR138. Functional investigations of MaLYK3 revealed its pivotal role in triggering immune responses of N. benthamiana by upregulating a suite of resistance genes, bolstering reactive oxygen species (ROS) accumulation and callose deposition, thereby fortifying disease resistance. This response was markedly subdued upon co-expression with Foc-milR138. Expression pattern analysis further verified the specific suppression of MaLYK3 by Foc-milR138 during the early root infection by Foc. In conclusion, Foc secretes a virulent milRNA (Foc-milR138) to enter the host banana cells and inhibit the expression of the plant surface receptor-like kinase MaLYK3, subverting the disease resistance activated by MaLYK3, and ultimately facilitating pathogen invasion. These findings shed light on the roles of fungal milRNAs and their targets in resistance and pathogenicity, offering promising avenues for the development of disease-resistant banana cultivars.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毒性milRNA通过抑制宿主受体样激酶MaLYK3来抑制宿主免疫,并促进立方孢镰刀菌的感染。
类微 RNA(milRNA)在植物病原真菌的感染过程中发挥着重要作用。然而,真菌 milRNA 的具体功能和调控机制仍未得到充分阐明。本研究调查了香蕉镰刀菌枯萎病病原菌 Fusarium oxysporum f. sp. cubense(Foc)分泌的感染诱导型 milRNA Foc-milR138 的功能。最初,通过前体基因敲除和表型评估,我们证实 Foc-milR138 是一种毒性 milRNA,在 Foc 感染的早期阶段显著上调。随后的生物信息学分析和在烟草叶片中的瞬时表达实验确定了宿主受体样激酶基因 MaLYK3 是 Foc-milR138 的直接靶标。对 MaLYK3 的功能研究表明,它在通过上调一系列抗性基因、促进活性氧(ROS)积累和胼胝质沉积从而增强抗病性来触发 N. benthamiana 的免疫反应方面起着关键作用。这种反应在与 Foc-milR138 共同表达时明显减弱。表达模式分析进一步验证了 Foc-milR138 在 Foc 早期侵染根部时对 MaLYK3 的特异性抑制作用。总之,Foc分泌一种毒性milRNA(Foc-milR138)进入寄主香蕉细胞,抑制植物表面受体样激酶MaLYK3的表达,颠覆MaLYK3激活的抗病性,最终促进病原菌入侵。这些发现揭示了真菌 milRNA 及其靶标在抗性和致病性中的作用,为开发抗病香蕉品种提供了很好的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
期刊最新文献
Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis. The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility. A novel protein elicitor (Cs08297) from Ciboria shiraiana enhances plant disease resistance. Flg22-facilitated PGPR colonization in root tips and control of root rot. A single phosphorylatable amino acid residue is essential for the recognition of multiple potyviral HCPro effectors by potato Nytbr.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1