Protein P5 of pear chlorotic leaf spot-associated virus is a pathogenic factor that suppresses RNA silencing and enhances virus movement.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Molecular plant pathology Pub Date : 2024-10-01 DOI:10.1111/mpp.70015
Qiuting Ren, Zhe Zhang, Yongle Zhang, Yue Zhang, Yujie Gao, Hongyi Zhang, Xianhong Wang, Guoping Wang, Ni Hong
{"title":"Protein P5 of pear chlorotic leaf spot-associated virus is a pathogenic factor that suppresses RNA silencing and enhances virus movement.","authors":"Qiuting Ren, Zhe Zhang, Yongle Zhang, Yue Zhang, Yujie Gao, Hongyi Zhang, Xianhong Wang, Guoping Wang, Ni Hong","doi":"10.1111/mpp.70015","DOIUrl":null,"url":null,"abstract":"<p><p>Pear chlorotic leaf spot-associated virus (PCLSaV) is a newly described emaravirus that infects pear trees. The virus genome consists of at least five single-stranded, negative-sense RNAs. The P5 encoded by RNA5 is unique to PCLSaV. In this study, the RNA silencing suppression (RSS) activity of P5 and its subcellular localization were determined in Nicotiana benthamiana plants by Agrobacterium tumefaciens-mediated expression assays and green fluorescent protein RNA silencing induction. Protein P5 partially suppressed local RNA silencing, strongly suppressed systemic RNA silencing and triggered reactive oxygen species accumulation. The P5 self-interacted and showed subcellular locations in plasmodesmata, endoplasmic reticulum and nucleus. Furthermore, P5 rescued the cell-to-cell movement of a movement defective mutant PVXΔP25 of potato virus X (PVX) and enhanced the pathogenicity of PVX. The N-terminal 1-89 amino acids of the P5 were responsible for the self-interaction ability and RSS activity, for which the signal peptide at positions 1-19 was indispensable. This study demonstrated the function of an emaravirus protein as a pathogenic factor suppressing plant RNA silencing to enhance virus infection and as an enhancer of virus movement.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 10","pages":"e70015"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70015","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pear chlorotic leaf spot-associated virus (PCLSaV) is a newly described emaravirus that infects pear trees. The virus genome consists of at least five single-stranded, negative-sense RNAs. The P5 encoded by RNA5 is unique to PCLSaV. In this study, the RNA silencing suppression (RSS) activity of P5 and its subcellular localization were determined in Nicotiana benthamiana plants by Agrobacterium tumefaciens-mediated expression assays and green fluorescent protein RNA silencing induction. Protein P5 partially suppressed local RNA silencing, strongly suppressed systemic RNA silencing and triggered reactive oxygen species accumulation. The P5 self-interacted and showed subcellular locations in plasmodesmata, endoplasmic reticulum and nucleus. Furthermore, P5 rescued the cell-to-cell movement of a movement defective mutant PVXΔP25 of potato virus X (PVX) and enhanced the pathogenicity of PVX. The N-terminal 1-89 amino acids of the P5 were responsible for the self-interaction ability and RSS activity, for which the signal peptide at positions 1-19 was indispensable. This study demonstrated the function of an emaravirus protein as a pathogenic factor suppressing plant RNA silencing to enhance virus infection and as an enhancer of virus movement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
梨叶斑病相关病毒的蛋白质 P5 是一种致病因子,它能抑制 RNA 沉默并增强病毒的移动。
梨萎黄叶斑病相关病毒(PCLSaV)是一种新发现的感染梨树的巨细胞病毒。病毒基因组至少由五条单链负义 RNA 组成。RNA5 编码的 P5 是 PCLSaV 独有的。本研究通过农杆菌介导的表达检测和绿色荧光蛋白 RNA 沉默诱导,确定了 P5 在烟草本根植物中的 RNA 沉默抑制(RSS)活性及其亚细胞定位。蛋白 P5 部分抑制了局部 RNA 沉默,强烈抑制了系统性 RNA 沉默,并引发了活性氧积累。P5 具有自我交互作用,并显示出在质膜、内质网和细胞核中的亚细胞位置。此外,P5 还能挽救马铃薯病毒 X(PVX)运动缺陷突变体 PVXΔP25 的细胞间运动,并增强 PVX 的致病性。P5的N端1-89个氨基酸负责自相互作用能力和RSS活性,其中1-19位的信号肽是不可或缺的。该研究证明了鸸鹋病毒蛋白作为致病因子抑制植物 RNA 沉默以增强病毒感染的功能,以及作为病毒运动增强因子的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
期刊最新文献
N Protein of Tomato Spotted Wilt Virus Proven to Be Antagonistic Against Tomato Yellow Leaf Curl Virus in Nicotiana benthamiana. Papain-Like Cysteine Proteases Contribute to Functional Cleavage of Begomoviral V2 Effector Required for Relevant Virulences. Apple Bitter Rot: Biology, Ecology, Omics, Virulence Factors, and Management of Causal Colletotrichum Species. Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein. Lrp Family Regulator SCAB_Lrp2 Responds to the Precursor Tryptophan and Represses the Thaxtomin Biosynthesis in Streptomyces scabies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1