Lily Taub, Thomas H Hampton, Sharanya Sarkar, Georgia Doing, Samuel L Neff, Carson E Finger, Kiyoshi Ferreira Fukutani, Bruce A Stanton
{"title":"E.PathDash, pathway activation analysis of publicly available pathogen gene expression data.","authors":"Lily Taub, Thomas H Hampton, Sharanya Sarkar, Georgia Doing, Samuel L Neff, Carson E Finger, Kiyoshi Ferreira Fukutani, Bruce A Stanton","doi":"10.1128/msystems.01030-24","DOIUrl":null,"url":null,"abstract":"<p><p>E.PathDash facilitates re-analysis of gene expression data from pathogens clinically relevant to chronic respiratory diseases, including a total of 48 studies, 548 samples, and 404 unique treatment comparisons. The application enables users to assess broad biological stress responses at the KEGG pathway or gene ontology level and also provides data for individual genes. E.PathDash reduces the time required to gain access to data from multiple hours per data set to seconds. Users can download high-quality images such as volcano plots and boxplots, differential gene expression results, and raw count data, making it fully interoperable with other tools. Importantly, users can rapidly toggle between experimental comparisons and different studies of the same phenomenon, enabling them to judge the extent to which observed responses are reproducible. As a proof of principle, we invited two cystic fibrosis scientists to use the application to explore scientific questions relevant to their specific research areas. Reassuringly, pathway activation analysis recapitulated results reported in original publications, but it also yielded new insights into pathogen responses to changes in their environments, validating the utility of the application. All software and data are freely accessible, and the application is available at scangeo.dartmouth.edu/EPathDash.</p><p><strong>Importance: </strong>Chronic respiratory illnesses impose a high disease burden on our communities and people with respiratory diseases are susceptible to robust bacterial infections from pathogens, including <i>Pseudomonas aeruginosa</i> and <i>Staphylococcus aureus</i>, that contribute to morbidity and mortality. Public gene expression datasets generated from these and other pathogens are abundantly available and an important resource for synthesizing existing pathogenic research, leading to interventions that improve patient outcomes. However, it can take many hours or weeks to render publicly available datasets usable; significant time and skills are needed to clean, standardize, and apply reproducible and robust bioinformatic pipelines to the data. Through collaboration with two microbiologists, we have shown that E.PathDash addresses this problem, enabling them to elucidate pathogen responses to a variety of over 400 experimental conditions and generate mechanistic hypotheses for cell-level behavior in response to disease-relevant exposures, all in a fraction of the time.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.01030-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
E.PathDash facilitates re-analysis of gene expression data from pathogens clinically relevant to chronic respiratory diseases, including a total of 48 studies, 548 samples, and 404 unique treatment comparisons. The application enables users to assess broad biological stress responses at the KEGG pathway or gene ontology level and also provides data for individual genes. E.PathDash reduces the time required to gain access to data from multiple hours per data set to seconds. Users can download high-quality images such as volcano plots and boxplots, differential gene expression results, and raw count data, making it fully interoperable with other tools. Importantly, users can rapidly toggle between experimental comparisons and different studies of the same phenomenon, enabling them to judge the extent to which observed responses are reproducible. As a proof of principle, we invited two cystic fibrosis scientists to use the application to explore scientific questions relevant to their specific research areas. Reassuringly, pathway activation analysis recapitulated results reported in original publications, but it also yielded new insights into pathogen responses to changes in their environments, validating the utility of the application. All software and data are freely accessible, and the application is available at scangeo.dartmouth.edu/EPathDash.
Importance: Chronic respiratory illnesses impose a high disease burden on our communities and people with respiratory diseases are susceptible to robust bacterial infections from pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus, that contribute to morbidity and mortality. Public gene expression datasets generated from these and other pathogens are abundantly available and an important resource for synthesizing existing pathogenic research, leading to interventions that improve patient outcomes. However, it can take many hours or weeks to render publicly available datasets usable; significant time and skills are needed to clean, standardize, and apply reproducible and robust bioinformatic pipelines to the data. Through collaboration with two microbiologists, we have shown that E.PathDash addresses this problem, enabling them to elucidate pathogen responses to a variety of over 400 experimental conditions and generate mechanistic hypotheses for cell-level behavior in response to disease-relevant exposures, all in a fraction of the time.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.