Two distinct epithelial-to-mesenchymal transition programs control invasion and inflammation in segregated tumor cell populations.

IF 23.5 1区 医学 Q1 ONCOLOGY Nature cancer Pub Date : 2024-10-16 DOI:10.1038/s43018-024-00839-5
Khalil Kass Youssef, Nitin Narwade, Aida Arcas, Angel Marquez-Galera, Raúl Jiménez-Castaño, Cristina Lopez-Blau, Hassan Fazilaty, David García-Gutierrez, Amparo Cano, Joan Galcerán, Gema Moreno-Bueno, Jose P Lopez-Atalaya, M Angela Nieto
{"title":"Two distinct epithelial-to-mesenchymal transition programs control invasion and inflammation in segregated tumor cell populations.","authors":"Khalil Kass Youssef, Nitin Narwade, Aida Arcas, Angel Marquez-Galera, Raúl Jiménez-Castaño, Cristina Lopez-Blau, Hassan Fazilaty, David García-Gutierrez, Amparo Cano, Joan Galcerán, Gema Moreno-Bueno, Jose P Lopez-Atalaya, M Angela Nieto","doi":"10.1038/s43018-024-00839-5","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial-to-mesenchymal transition (EMT) triggers cell plasticity in embryonic development, adult injured tissues and cancer. Combining the analysis of EMT in cell lines, embryonic neural crest and mouse models of renal fibrosis and breast cancer, we find that there is not a cancer-specific EMT program. Instead, cancer cells dedifferentiate and bifurcate into two distinct and segregated cellular trajectories after activating either embryonic-like or adult-like EMTs to drive dissemination or inflammation, respectively. We show that SNAIL1 acts as a pioneer factor in both EMT trajectories, and PRRX1 drives the progression of the embryonic-like invasive trajectory. We also find that the two trajectories are plastic and interdependent, as the abrogation of the EMT invasive trajectory by deleting Prrx1 not only prevents metastasis but also enhances inflammation, increasing the recruitment of antitumor macrophages. Our data unveil an additional role for EMT in orchestrating intratumor heterogeneity, driving the distribution of functions associated with either inflammation or metastatic dissemination.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-024-00839-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epithelial-to-mesenchymal transition (EMT) triggers cell plasticity in embryonic development, adult injured tissues and cancer. Combining the analysis of EMT in cell lines, embryonic neural crest and mouse models of renal fibrosis and breast cancer, we find that there is not a cancer-specific EMT program. Instead, cancer cells dedifferentiate and bifurcate into two distinct and segregated cellular trajectories after activating either embryonic-like or adult-like EMTs to drive dissemination or inflammation, respectively. We show that SNAIL1 acts as a pioneer factor in both EMT trajectories, and PRRX1 drives the progression of the embryonic-like invasive trajectory. We also find that the two trajectories are plastic and interdependent, as the abrogation of the EMT invasive trajectory by deleting Prrx1 not only prevents metastasis but also enhances inflammation, increasing the recruitment of antitumor macrophages. Our data unveil an additional role for EMT in orchestrating intratumor heterogeneity, driving the distribution of functions associated with either inflammation or metastatic dissemination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两种不同的上皮-间质转化程序控制着隔离肿瘤细胞群的侵袭和炎症。
上皮细胞向间质转化(EMT)在胚胎发育、成人损伤组织和癌症中引发细胞可塑性。结合对细胞系、胚胎神经嵴以及肾脏纤维化和乳腺癌小鼠模型中 EMT 的分析,我们发现并不存在癌症特异性 EMT 程序。相反,癌细胞在激活胚胎样或成体样 EMTs 以分别驱动扩散或炎症后,会发生去分化并分叉成两种不同的隔离细胞轨迹。我们发现,SNAIL1 在两种 EMT 轨迹中都起着先驱因子的作用,而 PRRX1 则驱动着胚胎样侵袭性轨迹的发展。我们还发现,这两种轨迹具有可塑性和相互依赖性,因为通过删除 Prrx1 来消除 EMT 侵袭轨迹不仅能防止转移,还能增强炎症反应,增加抗肿瘤巨噬细胞的招募。我们的数据揭示了 EMT 在协调肿瘤内异质性方面的另一个作用,它推动了与炎症或转移扩散相关的功能的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature cancer
Nature cancer Medicine-Oncology
CiteScore
31.10
自引率
1.80%
发文量
129
期刊介绍: Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates. Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale. In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.
期刊最新文献
Transcription and DNA replication collisions lead to large tandem duplications and expose targetable therapeutic vulnerabilities in cancer. Single-cell transcriptomic landscape deciphers olfactory neuroblastoma subtypes and intra-tumoral heterogeneity. The pro-oncogenic noncanonical activity of a RAS•GTP:RanGAP1 complex facilitates nuclear protein export. Modeling adenoma-carcinoma progression from a single MLH1-knockout cell via colon organoids. Recapitulating the adenoma-carcinoma sequence by selection of four spontaneous oncogenic mutations in mismatch-repair-deficient human colon organoids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1