Anderson Velasque Catarina, Gisele Branchini, Rafael Andrade Caceres, Renata Streck Fernandes, Bruna Pasqualotto Costa, Kleiton Lima De Godoy Machado, Tiago Becker, Luis Fernando Ferreira, Katya Rigatto, Jarbas Rodrigues de Oliveira, Fernanda Bordignon Nunes
{"title":"Fructose-1,6-bisphosphate reverses hypotensive effect caused by L-kynurenine in Wistar male rats.","authors":"Anderson Velasque Catarina, Gisele Branchini, Rafael Andrade Caceres, Renata Streck Fernandes, Bruna Pasqualotto Costa, Kleiton Lima De Godoy Machado, Tiago Becker, Luis Fernando Ferreira, Katya Rigatto, Jarbas Rodrigues de Oliveira, Fernanda Bordignon Nunes","doi":"10.14814/phy2.70033","DOIUrl":null,"url":null,"abstract":"<p><p>Hypotension is one of the main characteristics of the systemic inflammation, basically caused by endothelial dysfunction. Studies have shown that the amino acid L-kynurenine (KYN) causes vasodilation in mammals, leading to hypotensive shock. In hypotensive shock, when activated by the KYN, the voltage-gated potassium channel encoded by the family KCNQ (Kv7) gene can cause vasodilation. Fructose-1,6-bisphosphate (FBP) it is being considered in studies an anti-inflammatory, antioxidant, immunomodulator, and a modulator of some ion channels (Ca2+, Na+, and K+). We analyzed the effects of KYN and FBP on mean blood pressure (MBP), systolic and diastolic (DBP) blood pressure, and heart rate variability (HRV) in Wistar rats. Results demonstrated that the administration of KYN significant decreased MBP, DBP, and increased HRV. Importantly, the FBP treatment reversed the KYN effects on MBP, DBP, and HRV. Molecular Docking Simulations suggested that KYN and FBP present a very close estimated free energy of binding and the same position into structure of KCNQ4. Our results did demonstrate that FBP blunted the decrease in BP, provoked by KYN. Results raise new hypotheses for future and studies in the treatment of hypotension resulting from inflammation.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypotension is one of the main characteristics of the systemic inflammation, basically caused by endothelial dysfunction. Studies have shown that the amino acid L-kynurenine (KYN) causes vasodilation in mammals, leading to hypotensive shock. In hypotensive shock, when activated by the KYN, the voltage-gated potassium channel encoded by the family KCNQ (Kv7) gene can cause vasodilation. Fructose-1,6-bisphosphate (FBP) it is being considered in studies an anti-inflammatory, antioxidant, immunomodulator, and a modulator of some ion channels (Ca2+, Na+, and K+). We analyzed the effects of KYN and FBP on mean blood pressure (MBP), systolic and diastolic (DBP) blood pressure, and heart rate variability (HRV) in Wistar rats. Results demonstrated that the administration of KYN significant decreased MBP, DBP, and increased HRV. Importantly, the FBP treatment reversed the KYN effects on MBP, DBP, and HRV. Molecular Docking Simulations suggested that KYN and FBP present a very close estimated free energy of binding and the same position into structure of KCNQ4. Our results did demonstrate that FBP blunted the decrease in BP, provoked by KYN. Results raise new hypotheses for future and studies in the treatment of hypotension resulting from inflammation.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.