Resource-optimized cnns for real-time rice disease detection with ARM cortex-M microprocessors.

IF 4.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Plant Methods Pub Date : 2024-10-16 DOI:10.1186/s13007-024-01280-6
Hermawan Nugroho, Jing Xan Chew, Sivaraman Eswaran, Fei Siang Tay
{"title":"Resource-optimized cnns for real-time rice disease detection with ARM cortex-M microprocessors.","authors":"Hermawan Nugroho, Jing Xan Chew, Sivaraman Eswaran, Fei Siang Tay","doi":"10.1186/s13007-024-01280-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the application of Artificial Intelligence (AI), specifically Convolutional Neural Networks (CNNs), for detecting rice plant diseases using ARM Cortex-M microprocessors. Given the significant role of rice as a staple food, particularly in Malaysia where the rice self-sufficiency ratio dropped from 65.2% in 2021 to 62.6% in 2022, there is a pressing need for advanced disease detection methods to enhance agricultural productivity and sustainability. The research utilizes two extensive datasets for model training and validation: the first dataset includes 5932 images across four rice disease classes, and the second comprises 10,407 images across ten classes. These datasets facilitate comprehensive disease detection analysis, leveraging MobileNetV2 and FD-MobileNet models optimized for the ARM Cortex-M4 microprocessor. The performance of these models is rigorously evaluated in terms of accuracy and computational efficiency. MobileNetV2, for instance, demonstrates a high accuracy rate of 97.5%, significantly outperforming FD-MobileNet, especially in detecting complex disease patterns such as tungro with a 93% accuracy rate. Despite FD-MobileNet's lower resource consumption, its accuracy is limited to 90% across varied testing conditions. Resource optimization strategies highlight that even slight adjustments, such as a 0.5% reduction in RAM usage and a 1.14% decrease in flash memory, can result in a notable 9% increase in validation accuracy. This underscores the critical balance between computational resource management and model performance, particularly in resource-constrained settings like those provided by microcontrollers. In summary, the deployment of CNNs on microcontrollers presents a viable solution for real-time, on-site plant disease detection, demonstrating potential improvements in detection accuracy and operational efficiency. This study advances the field of smart agriculture by integrating cutting-edge AI with practical agricultural needs, aiming to address the challenges of food security in vulnerable regions.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"159"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01280-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the application of Artificial Intelligence (AI), specifically Convolutional Neural Networks (CNNs), for detecting rice plant diseases using ARM Cortex-M microprocessors. Given the significant role of rice as a staple food, particularly in Malaysia where the rice self-sufficiency ratio dropped from 65.2% in 2021 to 62.6% in 2022, there is a pressing need for advanced disease detection methods to enhance agricultural productivity and sustainability. The research utilizes two extensive datasets for model training and validation: the first dataset includes 5932 images across four rice disease classes, and the second comprises 10,407 images across ten classes. These datasets facilitate comprehensive disease detection analysis, leveraging MobileNetV2 and FD-MobileNet models optimized for the ARM Cortex-M4 microprocessor. The performance of these models is rigorously evaluated in terms of accuracy and computational efficiency. MobileNetV2, for instance, demonstrates a high accuracy rate of 97.5%, significantly outperforming FD-MobileNet, especially in detecting complex disease patterns such as tungro with a 93% accuracy rate. Despite FD-MobileNet's lower resource consumption, its accuracy is limited to 90% across varied testing conditions. Resource optimization strategies highlight that even slight adjustments, such as a 0.5% reduction in RAM usage and a 1.14% decrease in flash memory, can result in a notable 9% increase in validation accuracy. This underscores the critical balance between computational resource management and model performance, particularly in resource-constrained settings like those provided by microcontrollers. In summary, the deployment of CNNs on microcontrollers presents a viable solution for real-time, on-site plant disease detection, demonstrating potential improvements in detection accuracy and operational efficiency. This study advances the field of smart agriculture by integrating cutting-edge AI with practical agricultural needs, aiming to address the challenges of food security in vulnerable regions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 ARM cortex-M 微处理器实时检测水稻病害的资源优化 cnns。
本研究探讨了人工智能(AI),特别是卷积神经网络(CNN)在使用 ARM Cortex-M 微处理器检测水稻病害方面的应用。鉴于水稻作为主食的重要作用,特别是马来西亚的水稻自给率从 2021 年的 65.2% 下降到 2022 年的 62.6%,因此迫切需要先进的病害检测方法来提高农业生产率和可持续性。该研究利用两个广泛的数据集进行模型训练和验证:第一个数据集包括 5932 幅图像,涉及四个水稻病害类别;第二个数据集包括 10407 幅图像,涉及十个类别。这些数据集有助于利用针对 ARM Cortex-M4 微处理器优化的 MobileNetV2 和 FD-MobileNet 模型进行全面的病害检测分析。这些模型的性能在准确性和计算效率方面得到了严格评估。例如,MobileNetV2 的准确率高达 97.5%,明显优于 FD-MobileNet,特别是在检测复杂的疾病模式(如桐子病)时,准确率高达 93%。尽管 FD-MobileNet 的资源消耗较低,但在不同的测试条件下,其准确率仅限于 90%。资源优化策略突出表明,即使是微小的调整,如减少 0.5% 的内存使用量和 1.14% 的闪存使用量,也能显著提高 9% 的验证准确率。这凸显了计算资源管理与模型性能之间的关键平衡,尤其是在微控制器等资源有限的环境中。总之,在微控制器上部署 CNN 为实时、现场植物病害检测提供了可行的解决方案,显示了在检测精度和运行效率方面的潜在改进。这项研究通过将前沿的人工智能与实际农业需求相结合,推进了智能农业领域的发展,旨在应对脆弱地区的粮食安全挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
期刊最新文献
AI-powered detection and quantification of post-harvest physiological deterioration (PPD) in cassava using YOLO foundation models and K-means clustering. An innovative natural speed breeding technique for accelerated chickpea (Cicer arietinum L.) generation turnover. Strategy for early selection for grain yield in soybean using BLUPIS. Automated image registration of RGB, hyperspectral and chlorophyll fluorescence imaging data. Establishment of callus induction and plantlet regeneration systems of Peucedanum Praeruptorum dunn based on the tissue culture method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1