Mohammad Zarenia, Ying Zhang, Christina Sarosiek, Renae Conlin, Asma Amjad, Eric Paulson
{"title":"Deep learning-based automatic contour quality assurance for auto-segmented abdominal MR-Linac contours.","authors":"Mohammad Zarenia, Ying Zhang, Christina Sarosiek, Renae Conlin, Asma Amjad, Eric Paulson","doi":"10.1088/1361-6560/ad87a6","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Deep-learning auto-segmentation (DLAS) aims to streamline contouring in clinical settings. Nevertheless, achieving clinical acceptance of DLAS remains a hurdle in abdominal MRI, hindering the implementation of efficient clinical workflows for MR-guided online adaptive radiotherapy (MRgOART). Integrating automated contour quality assurance (ACQA) with automatic contour correction (ACC) techniques could optimize the performance of ACC by concentrating on inaccurate contours. Furthermore, ACQA can facilitate the contour selection process from various DLAS tools and/or deformable contour propagation from a prior treatment session. Here, we present the performance of novel DL-based 3D ACQA models for evaluating DLAS contours acquired during MRgOART.<i>Approach.</i>The ACQA model, based on a 3D convolutional neural network (CNN), was trained using pancreas and duodenum contours obtained from a research DLAS tool on abdominal MRIs acquired from a 1.5 T MR-Linac. The training dataset contained abdominal MR images, DL contours, and their corresponding quality ratings, from 103 datasets. The quality of DLAS contours was determined using an in-house contour classification tool, which categorizes contours as acceptable or edit-required based on the expected editing effort. The performance of the 3D ACQA model was evaluated using an independent dataset of 34 abdominal MRIs, utilizing confusion matrices for true and predicted classes.<i>Main results.</i>The ACQA predicted 'acceptable' and 'edit-required' contours at 72.2% (91/126) and 83.6% (726/868) accuracy for pancreas, and at 71.2% (79/111) and 89.6% (772/862) for duodenum contours, respectively. The model successfully identified false positive (extra) and false negative (missing) DLAS contours at 93.75% (15/16) and %99.7 (438/439) accuracy for pancreas, and at 95% (57/60) and 98.9% (91/99) for duodenum, respectively.<i>Significance.</i>We developed 3D-ACQA models capable of quickly evaluating the quality of DLAS pancreas and duodenum contours on abdominal MRI. These models can be integrated into clinical workflow, facilitating efficient and consistent contour evaluation process in MRgOART for abdominal malignancies.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551967/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad87a6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.Deep-learning auto-segmentation (DLAS) aims to streamline contouring in clinical settings. Nevertheless, achieving clinical acceptance of DLAS remains a hurdle in abdominal MRI, hindering the implementation of efficient clinical workflows for MR-guided online adaptive radiotherapy (MRgOART). Integrating automated contour quality assurance (ACQA) with automatic contour correction (ACC) techniques could optimize the performance of ACC by concentrating on inaccurate contours. Furthermore, ACQA can facilitate the contour selection process from various DLAS tools and/or deformable contour propagation from a prior treatment session. Here, we present the performance of novel DL-based 3D ACQA models for evaluating DLAS contours acquired during MRgOART.Approach.The ACQA model, based on a 3D convolutional neural network (CNN), was trained using pancreas and duodenum contours obtained from a research DLAS tool on abdominal MRIs acquired from a 1.5 T MR-Linac. The training dataset contained abdominal MR images, DL contours, and their corresponding quality ratings, from 103 datasets. The quality of DLAS contours was determined using an in-house contour classification tool, which categorizes contours as acceptable or edit-required based on the expected editing effort. The performance of the 3D ACQA model was evaluated using an independent dataset of 34 abdominal MRIs, utilizing confusion matrices for true and predicted classes.Main results.The ACQA predicted 'acceptable' and 'edit-required' contours at 72.2% (91/126) and 83.6% (726/868) accuracy for pancreas, and at 71.2% (79/111) and 89.6% (772/862) for duodenum contours, respectively. The model successfully identified false positive (extra) and false negative (missing) DLAS contours at 93.75% (15/16) and %99.7 (438/439) accuracy for pancreas, and at 95% (57/60) and 98.9% (91/99) for duodenum, respectively.Significance.We developed 3D-ACQA models capable of quickly evaluating the quality of DLAS pancreas and duodenum contours on abdominal MRI. These models can be integrated into clinical workflow, facilitating efficient and consistent contour evaluation process in MRgOART for abdominal malignancies.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry