Yukihisa Goto, Yasuhiro Kadota, Malick Mbengue, Jennifer D Lewis, Hidenori Matsui, Noriko Maki, Bruno Pok Man Ngou, Jan Sklenar, Paul Derbyshire, Arisa Shibata, Yasunori Ichihashi, David S Guttman, Hirofumi Nakagami, Takamasa Suzuki, Frank L H Menke, Silke Robatzek, Darrell Desveaux, Cyril Zipfel, Ken Shirasu
{"title":"The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto.","authors":"Yukihisa Goto, Yasuhiro Kadota, Malick Mbengue, Jennifer D Lewis, Hidenori Matsui, Noriko Maki, Bruno Pok Man Ngou, Jan Sklenar, Paul Derbyshire, Arisa Shibata, Yasunori Ichihashi, David S Guttman, Hirofumi Nakagami, Takamasa Suzuki, Frank L H Menke, Silke Robatzek, Darrell Desveaux, Cyril Zipfel, Ken Shirasu","doi":"10.1093/plcell/koae267","DOIUrl":null,"url":null,"abstract":"<p><p>Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae267","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.