Sébastien Lageix, Miguel Hernandez, Maria E Gallego, Jérémy Verbeke, Yannick Bidet, Sandrine Viala, Charles I White
{"title":"Context effects on repair of 5'-overhang DNA double-strand breaks induced by Cas12a in Arabidopsis.","authors":"Sébastien Lageix, Miguel Hernandez, Maria E Gallego, Jérémy Verbeke, Yannick Bidet, Sandrine Viala, Charles I White","doi":"10.1002/pld3.70009","DOIUrl":null,"url":null,"abstract":"<p><p>Sequence-specific endonucleases have been key to the study of the mechanisms and control of DNA double-strand break (DSB) repair and recombination, and the availability of CRISPR-Cas nucleases over the last decade has driven rapid progress in the understanding and application of targeted recombination in many organisms, including plants. We present here an analysis of recombination at targeted chromosomal 5' overhang DSB generated by the FnCas12a endonuclease in the plant, <i>Arabidopsis thaliana</i>. The much-studied Cas9 nuclease cleaves DNA to generate blunt-ended DSBs, but relatively less is known about the repair of other types of breaks, such as those with 5'-overhanging ends. Sequencing the repaired breaks clearly shows that the majority of repaired DSB carry small deletions and are thus repaired locally by end-joining recombination, confirmed by Nanopore sequencing of larger amplicons. Paired DSBs generate deletions at one or both cut-sites, as well as deletions and reinsertions of the deleted segment between the two cuts, visible as inversions. While differences are seen in the details, overall the deletion patterns are similar between repair at single-cut and double-cut events, notwithstanding the fact that only the former involve cohesive DNA overhangs. A strikingly different repair pattern is however observed at breaks flanked by direct repeats. This change in sequence context results in the presence of a major alternative class of repair events, corresponding to highly efficient repair by single-strand annealing recombination.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 10","pages":"e70009"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486519/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70009","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sequence-specific endonucleases have been key to the study of the mechanisms and control of DNA double-strand break (DSB) repair and recombination, and the availability of CRISPR-Cas nucleases over the last decade has driven rapid progress in the understanding and application of targeted recombination in many organisms, including plants. We present here an analysis of recombination at targeted chromosomal 5' overhang DSB generated by the FnCas12a endonuclease in the plant, Arabidopsis thaliana. The much-studied Cas9 nuclease cleaves DNA to generate blunt-ended DSBs, but relatively less is known about the repair of other types of breaks, such as those with 5'-overhanging ends. Sequencing the repaired breaks clearly shows that the majority of repaired DSB carry small deletions and are thus repaired locally by end-joining recombination, confirmed by Nanopore sequencing of larger amplicons. Paired DSBs generate deletions at one or both cut-sites, as well as deletions and reinsertions of the deleted segment between the two cuts, visible as inversions. While differences are seen in the details, overall the deletion patterns are similar between repair at single-cut and double-cut events, notwithstanding the fact that only the former involve cohesive DNA overhangs. A strikingly different repair pattern is however observed at breaks flanked by direct repeats. This change in sequence context results in the presence of a major alternative class of repair events, corresponding to highly efficient repair by single-strand annealing recombination.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.