The BnaBPs gene regulates flowering time and leaf angle in Brassica napus.

IF 2.3 3区 生物学 Q2 PLANT SCIENCES Plant Direct Pub Date : 2024-10-15 eCollection Date: 2024-10-01 DOI:10.1002/pld3.70018
Jiang Yu, Yi-Xuan Xue, Rehman Sarwar, Shi-Hao Wei, Rui Geng, Yan-Feng Zhang, Jian-Xin Mu, Xiao-Li Tan
{"title":"The <i>BnaBPs</i> gene regulates flowering time and leaf angle in <i>Brassica napus</i>.","authors":"Jiang Yu, Yi-Xuan Xue, Rehman Sarwar, Shi-Hao Wei, Rui Geng, Yan-Feng Zhang, Jian-Xin Mu, Xiao-Li Tan","doi":"10.1002/pld3.70018","DOIUrl":null,"url":null,"abstract":"<p><p>The flowering time and plant architecture of <i>Brassica napus</i> were significantly associated with yield. In this study, we found that the <i>BREVIPEDICELLUS</i>/<i>KNAT1</i>(<i>BP</i>) gene regulated the flowering time and plant architecture of <i>B. napus</i>. However, the precise regulatory mechanism remains unclear. We cloned two homologous <i>BP</i> genes, <i>BnaBPA03</i> and <i>BnaBPC03</i>, from <i>B. napus</i> Xiaoyun. The protein sequence analysis showed two proteins containing conserved domains KNOX I, KNOX II, ELK, and HOX of the KONX protein family. The CRISPR/Cas9 knockout lines exhibited early budding and flowering time, coupled with floral organ abscission earlier and a larger leaf angle. On the contrary, overexpression plants displayed a phenotype that was the inverse of these characteristics. Furthermore, we observed upregulation of gibberellin and ethylene biosynthesis genes, as well as floral integrator genes in knocked-out plants. The results revealed that <i>BnaBPs</i> play a role in flowering time, floral organ abscission, and leaf angle as well as germination processes mediated. Additionally, <i>BnaBPs</i> exerted an impact on the biosynthesis pathways of ethylene and GA.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 10","pages":"e70018"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The flowering time and plant architecture of Brassica napus were significantly associated with yield. In this study, we found that the BREVIPEDICELLUS/KNAT1(BP) gene regulated the flowering time and plant architecture of B. napus. However, the precise regulatory mechanism remains unclear. We cloned two homologous BP genes, BnaBPA03 and BnaBPC03, from B. napus Xiaoyun. The protein sequence analysis showed two proteins containing conserved domains KNOX I, KNOX II, ELK, and HOX of the KONX protein family. The CRISPR/Cas9 knockout lines exhibited early budding and flowering time, coupled with floral organ abscission earlier and a larger leaf angle. On the contrary, overexpression plants displayed a phenotype that was the inverse of these characteristics. Furthermore, we observed upregulation of gibberellin and ethylene biosynthesis genes, as well as floral integrator genes in knocked-out plants. The results revealed that BnaBPs play a role in flowering time, floral organ abscission, and leaf angle as well as germination processes mediated. Additionally, BnaBPs exerted an impact on the biosynthesis pathways of ethylene and GA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BnaBPs 基因调控甘蓝型油菜的开花时间和叶片角度。
甘蓝型油菜的开花时间和植株结构与产量密切相关。本研究发现,BREVIPEDICELLUS/KNAT1(BP)基因调控着油菜的开花时间和植株结构。然而,确切的调控机制仍不清楚。我们从小云油菜中克隆了两个同源的 BP 基因 BnaBPA03 和 BnaBPC03。蛋白质序列分析表明,这两个蛋白含有KONX蛋白家族的保守结构域KNOX I、KNOX II、ELK和HOX。CRISPR/Cas9基因敲除株系的萌芽和开花时间均较早,花器脱落也较早,叶片角度较大。相反,过表达植株则表现出与这些特征相反的表型。此外,我们还观察到敲除植株中赤霉素和乙烯生物合成基因以及花整合基因的上调。研究结果表明,BnaBPs 在开花时间、花器官脱落、叶片角度以及萌芽过程中起着介导作用。此外,BnaBPs 对乙烯和 GA 的生物合成途径也有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
期刊最新文献
Broad-scale phenotyping in Arabidopsis reveals varied involvement of RNA interference across diverse plant-microbe interactions. Localization of proteins involved in the biogenesis and repair of the photosynthetic apparatus to thylakoid subdomains in Arabidopsis. A strategy for identification and characterization of genic mutations using a temperature-sensitive chlorotic soybean mutant as an example. Interdisciplinarity through internationality: Results from a US-Mexico graduate course bridging computational and plant science. Integrative physiological and transcriptome analysis unravels the mechanism of low nitrogen use efficiency in burley tobacco.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1