Rapid shift in methane carbon isotopes suggests microbial emissions drove record high atmospheric methane growth in 2020-2022.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-10-29 Epub Date: 2024-10-21 DOI:10.1073/pnas.2411212121
Sylvia Englund Michel, Xin Lan, John Miller, Pieter Tans, J Reid Clark, Hinrich Schaefer, Peter Sperlich, Gordon Brailsford, Shinji Morimoto, Heiko Moossen, Jianghanyang Li
{"title":"Rapid shift in methane carbon isotopes suggests microbial emissions drove record high atmospheric methane growth in 2020-2022.","authors":"Sylvia Englund Michel, Xin Lan, John Miller, Pieter Tans, J Reid Clark, Hinrich Schaefer, Peter Sperlich, Gordon Brailsford, Shinji Morimoto, Heiko Moossen, Jianghanyang Li","doi":"10.1073/pnas.2411212121","DOIUrl":null,"url":null,"abstract":"<p><p>The growth rate of the atmospheric abundance of methane (CH<sub>4</sub>) reached a record high of 15.4 ppb yr<sup>-1</sup> between 2020 and 2022, but the mechanisms driving the accelerated CH<sub>4</sub> growth have so far been unclear. In this work, we use measurements of the <sup>13</sup>C:<sup>12</sup>C ratio of CH<sub>4</sub> (expressed as <i>δ</i><sup>13</sup>C<sub>CH4</sub>) from NOAA's Global Greenhouse Gas Reference Network and a box model to investigate potential drivers for the rapid CH<sub>4</sub> growth. These measurements show that the record-high CH<sub>4</sub> growth in 2020-2022 was accompanied by a sharp decline in <i>δ</i><sup>13</sup>C<sub>CH4</sub>, indicating that the increase in CH<sub>4</sub> abundance was mainly driven by increased emissions from microbial sources such as wetlands, waste, and agriculture. We use our box model to reject increasing fossil fuel emissions or decreasing hydroxyl radical sink as the dominant driver for increasing global methane abundance.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2411212121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The growth rate of the atmospheric abundance of methane (CH4) reached a record high of 15.4 ppb yr-1 between 2020 and 2022, but the mechanisms driving the accelerated CH4 growth have so far been unclear. In this work, we use measurements of the 13C:12C ratio of CH4 (expressed as δ13CCH4) from NOAA's Global Greenhouse Gas Reference Network and a box model to investigate potential drivers for the rapid CH4 growth. These measurements show that the record-high CH4 growth in 2020-2022 was accompanied by a sharp decline in δ13CCH4, indicating that the increase in CH4 abundance was mainly driven by increased emissions from microbial sources such as wetlands, waste, and agriculture. We use our box model to reject increasing fossil fuel emissions or decreasing hydroxyl radical sink as the dominant driver for increasing global methane abundance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲烷碳同位素的快速变化表明,微生物排放推动了 2020-2022 年大气中甲烷的创纪录增长。
2020 至 2022 年间,大气中甲烷(CH4)丰度的增长率达到了 15.4 ppb yr-1 的历史新高,但迄今为止,CH4 加速增长的驱动机制尚不清楚。在这项工作中,我们利用 NOAA 全球温室气体参考网络测量的 CH4 13C:12C 比率(用 δ13CCH4 表示)和箱式模型来研究 CH4 快速增长的潜在驱动因素。这些测量结果表明,2020-2022 年 CH4 增量创历史新高的同时,δ13CCH4 却急剧下降,这表明 CH4 丰度的增加主要是由湿地、废物和农业等微生物源排放量的增加所驱动的。我们利用盒式模型否定了化石燃料排放量增加或羟基自由基汇减少是全球甲烷丰度增加的主要驱动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Higher oxygen content and transport characterize high-altitude ethnic Tibetan women with the highest lifetime reproductive success. Persistently active El Niño-Southern Oscillation since the Mesozoic. Heat waves may trigger unexpected surge in aerosol and ozone precursor emissions from sedges in urban landscapes. A small-molecule carrier for the intracellular delivery of a membrane-impermeable protein with retained bioactivity. AMBRA1 controls the translation of immune-specific genes in T lymphocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1