{"title":"Sulforaphane regulates AngII-induced podocyte oxidative stress injury through the Nrf2-Keap1/ho-1/ROS pathway.","authors":"Wen Lu","doi":"10.1080/0886022X.2024.2416937","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to investigate the therapeutic effects of sulforaphane and the role of the Nrf2-Keap1/HO-1/ROS pathway in AngII-induced oxidative stress in podocyte injury.</p><p><strong>Methods: </strong>Mouse mpc5 podocytes were divided into four groups: control (Con), AngII, AngII + sulforaphane (AngII + SFN), and control + sulforaphane (Con + SFN). Western blotting was used to detect protein expression of Nrf2-Keap1, antioxidant enzyme HO-1, and apoptosis-related proteins. ROS levels were measured using a ROS assay kit, and cell survival and viability were assayed using the CCK-8 kit. Molecular interactions between Nrf2 and sulforaphane were analyzed computationally.</p><p><strong>Results: </strong>Compared with the Con group, podocytes treated with AngII alone exhibited inhibited proliferation, reduced cell viability, lower Bcl-2 expression, and higher cleaved caspase 3 expression. In the presence of sulforaphane, AngII group showed a mild inhibition on podocyte proliferation but did not induce the aforementioned changes in Bcl-2 and cleaved caspase 3 expression. Similarly, compared to the Con group, AngII treatment alone had lower Nrf2 expression and higher Keap1 expression in podocytes, accompanied by a significant decrease in ROS content. However, in the presence of sulforaphane, AngII failed to induce increases in Nrf2 and a decrease in Keap1 expression, as well as ROS levels. Furthermore, cells treated with sulforaphane exhibited higher HO-1 levels than control cells, and co-incubation with AngII did not alter HO-1 levels. Computational modeling revealed hydrophobic interactions between sulforaphane and the amino acid LYS-462 of Nrf2, as well as hydrogen bonding with amino acid HIS-465. The binding score between sulforaphane and Nrf2 was -4.7.</p><p><strong>Conclusion: </strong>Sulforaphane alleviated AngII-induced podocyte oxidative stress injury <i>via</i> the Nrf2-Keap1/HO-1/ROS pathway, providing new insights into therapeutic compounds for mitigating chronic kidney disease.</p>","PeriodicalId":20839,"journal":{"name":"Renal Failure","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488169/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renal Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/0886022X.2024.2416937","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to investigate the therapeutic effects of sulforaphane and the role of the Nrf2-Keap1/HO-1/ROS pathway in AngII-induced oxidative stress in podocyte injury.
Methods: Mouse mpc5 podocytes were divided into four groups: control (Con), AngII, AngII + sulforaphane (AngII + SFN), and control + sulforaphane (Con + SFN). Western blotting was used to detect protein expression of Nrf2-Keap1, antioxidant enzyme HO-1, and apoptosis-related proteins. ROS levels were measured using a ROS assay kit, and cell survival and viability were assayed using the CCK-8 kit. Molecular interactions between Nrf2 and sulforaphane were analyzed computationally.
Results: Compared with the Con group, podocytes treated with AngII alone exhibited inhibited proliferation, reduced cell viability, lower Bcl-2 expression, and higher cleaved caspase 3 expression. In the presence of sulforaphane, AngII group showed a mild inhibition on podocyte proliferation but did not induce the aforementioned changes in Bcl-2 and cleaved caspase 3 expression. Similarly, compared to the Con group, AngII treatment alone had lower Nrf2 expression and higher Keap1 expression in podocytes, accompanied by a significant decrease in ROS content. However, in the presence of sulforaphane, AngII failed to induce increases in Nrf2 and a decrease in Keap1 expression, as well as ROS levels. Furthermore, cells treated with sulforaphane exhibited higher HO-1 levels than control cells, and co-incubation with AngII did not alter HO-1 levels. Computational modeling revealed hydrophobic interactions between sulforaphane and the amino acid LYS-462 of Nrf2, as well as hydrogen bonding with amino acid HIS-465. The binding score between sulforaphane and Nrf2 was -4.7.
Conclusion: Sulforaphane alleviated AngII-induced podocyte oxidative stress injury via the Nrf2-Keap1/HO-1/ROS pathway, providing new insights into therapeutic compounds for mitigating chronic kidney disease.
期刊介绍:
Renal Failure primarily concentrates on acute renal injury and its consequence, but also addresses advances in the fields of chronic renal failure, hypertension, and renal transplantation. Bringing together both clinical and experimental aspects of renal failure, this publication presents timely, practical information on pathology and pathophysiology of acute renal failure; nephrotoxicity of drugs and other substances; prevention, treatment, and therapy of renal failure; renal failure in association with transplantation, hypertension, and diabetes mellitus.