Karina H Binda, Caroline C Real, Mette T Simonsen, Ebbe K Grove, Dirk Bender, Albert Gjedde, David J Brooks, Anne M Landau
{"title":"Acute transcutaneous auricular vagus nerve stimulation modulates presynaptic SV2A density in healthy rat brain: An in vivo microPET study.","authors":"Karina H Binda, Caroline C Real, Mette T Simonsen, Ebbe K Grove, Dirk Bender, Albert Gjedde, David J Brooks, Anne M Landau","doi":"10.1111/psyp.14709","DOIUrl":null,"url":null,"abstract":"<p><p>Vagus nerve stimulation (VNS) is the subject of exploration as an adjunct treatment for neurological disorders such as epilepsy, chronic migraine, pain, and depression. A non-invasive form of VNS is transcutaneous auricular VNS (taVNS). Combining animal models and positron emission tomography (PET) may lead to a better understanding of the elusive mechanisms of taVNS. We evaluated the acute effect of electrical stimulation of the left vagus nerve via the ear on brain synaptic vesicle glycoprotein 2A (SV2A) as a measure of presynaptic density and glucose metabolism in naïve rats. Female Sprague-Dawley rats were imaged with [<sup>11</sup>C]UCB-J (n = 11) or [<sup>18</sup>F]fluorodeoxyglucose ([<sup>18</sup>F]FDG) PET (n = 13) on two separate days, (1) at baseline, and (2) after acute unilateral left taVNS or sham stimulation (30 min). We calculated the regional volume of distribution (V<sub>T</sub>) for [<sup>11</sup>C]UCB-J and standard uptake values (SUV) for [<sup>18</sup>F]FDG. We observed regional reductions of [<sup>11</sup>C]UCB-J binding in response to taVNS ranging from 36% to 59%. The changes in taVNS compared to baseline were significantly larger than those induced by sham stimulation. The differences were observed bilaterally in the frontal cortex, striatum, and midbrain. The [<sup>18</sup>F]FDG PET uptake remained unchanged following acute taVNS or sham stimulation compared to baseline values. This proof-of-concept study shows for the first time that acute taVNS for 30 min can modulate in vivo synaptic SV2A density in cortical and subcortical regions of healthy rats. Preclinical disease models and PET ligands of different targets can be a powerful combination to assess the therapeutic potential of taVNS.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":" ","pages":"e14709"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775880/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14709","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vagus nerve stimulation (VNS) is the subject of exploration as an adjunct treatment for neurological disorders such as epilepsy, chronic migraine, pain, and depression. A non-invasive form of VNS is transcutaneous auricular VNS (taVNS). Combining animal models and positron emission tomography (PET) may lead to a better understanding of the elusive mechanisms of taVNS. We evaluated the acute effect of electrical stimulation of the left vagus nerve via the ear on brain synaptic vesicle glycoprotein 2A (SV2A) as a measure of presynaptic density and glucose metabolism in naïve rats. Female Sprague-Dawley rats were imaged with [11C]UCB-J (n = 11) or [18F]fluorodeoxyglucose ([18F]FDG) PET (n = 13) on two separate days, (1) at baseline, and (2) after acute unilateral left taVNS or sham stimulation (30 min). We calculated the regional volume of distribution (VT) for [11C]UCB-J and standard uptake values (SUV) for [18F]FDG. We observed regional reductions of [11C]UCB-J binding in response to taVNS ranging from 36% to 59%. The changes in taVNS compared to baseline were significantly larger than those induced by sham stimulation. The differences were observed bilaterally in the frontal cortex, striatum, and midbrain. The [18F]FDG PET uptake remained unchanged following acute taVNS or sham stimulation compared to baseline values. This proof-of-concept study shows for the first time that acute taVNS for 30 min can modulate in vivo synaptic SV2A density in cortical and subcortical regions of healthy rats. Preclinical disease models and PET ligands of different targets can be a powerful combination to assess the therapeutic potential of taVNS.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.