A Fourcade, F Klotzsche, S M Hofmann, A Mariola, V V Nikulin, A Villringer, M Gaebler
{"title":"Linking brain-heart interactions to emotional arousal in immersive virtual reality.","authors":"A Fourcade, F Klotzsche, S M Hofmann, A Mariola, V V Nikulin, A Villringer, M Gaebler","doi":"10.1111/psyp.14696","DOIUrl":null,"url":null,"abstract":"<p><p>The subjective experience of emotions is linked to the contextualized perception and appraisal of changes in bodily (e.g., heart) activity. Increased emotional arousal has been related to attenuated high-frequency heart rate variability (HF-HRV), lower EEG parieto-occipital alpha power, and higher heartbeat-evoked potential (HEP) amplitudes. We studied emotional arousal-related brain-heart interactions using immersive virtual reality (VR) for naturalistic yet controlled emotion induction. Twenty-nine healthy adults (13 women, age: 26 ± 3) completed a VR experience that included rollercoasters while EEG and ECG were recorded. Continuous emotional arousal ratings were collected during a video replay immediately after. We analyzed emotional arousal-related changes in HF-HRV as well as in BHIs using HEPs. Additionally, we used the oscillatory information in the ECG and the EEG to model the directional information flows between the brain and heart activity. We found that higher emotional arousal was associated with lower HEP amplitudes in a left fronto-central electrode cluster. While parasympathetic modulation of the heart (HF-HRV) and parieto-occipital EEG alpha power were reduced during higher emotional arousal, there was no evidence for the hypothesized emotional arousal-related changes in bidirectional information flow between them. Whole-brain exploratory analyses in additional EEG (delta, theta, alpha, beta and gamma) and HRV (low-frequency, LF, and HF) frequency bands revealed a temporo-occipital cluster, in which higher emotional arousal was linked to decreased brain-to-heart (i.e., gamma→HF-HRV) and increased heart-to-brain (i.e., LF-HRV → gamma) information flow. Our results confirm previous findings from less naturalistic experiments and suggest a link between emotional arousal and brain-heart interactions in temporo-occipital gamma power.</p>","PeriodicalId":20913,"journal":{"name":"Psychophysiology","volume":" ","pages":"e14696"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/psyp.14696","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The subjective experience of emotions is linked to the contextualized perception and appraisal of changes in bodily (e.g., heart) activity. Increased emotional arousal has been related to attenuated high-frequency heart rate variability (HF-HRV), lower EEG parieto-occipital alpha power, and higher heartbeat-evoked potential (HEP) amplitudes. We studied emotional arousal-related brain-heart interactions using immersive virtual reality (VR) for naturalistic yet controlled emotion induction. Twenty-nine healthy adults (13 women, age: 26 ± 3) completed a VR experience that included rollercoasters while EEG and ECG were recorded. Continuous emotional arousal ratings were collected during a video replay immediately after. We analyzed emotional arousal-related changes in HF-HRV as well as in BHIs using HEPs. Additionally, we used the oscillatory information in the ECG and the EEG to model the directional information flows between the brain and heart activity. We found that higher emotional arousal was associated with lower HEP amplitudes in a left fronto-central electrode cluster. While parasympathetic modulation of the heart (HF-HRV) and parieto-occipital EEG alpha power were reduced during higher emotional arousal, there was no evidence for the hypothesized emotional arousal-related changes in bidirectional information flow between them. Whole-brain exploratory analyses in additional EEG (delta, theta, alpha, beta and gamma) and HRV (low-frequency, LF, and HF) frequency bands revealed a temporo-occipital cluster, in which higher emotional arousal was linked to decreased brain-to-heart (i.e., gamma→HF-HRV) and increased heart-to-brain (i.e., LF-HRV → gamma) information flow. Our results confirm previous findings from less naturalistic experiments and suggest a link between emotional arousal and brain-heart interactions in temporo-occipital gamma power.
期刊介绍:
Founded in 1964, Psychophysiology is the most established journal in the world specifically dedicated to the dissemination of psychophysiological science. The journal continues to play a key role in advancing human neuroscience in its many forms and methodologies (including central and peripheral measures), covering research on the interrelationships between the physiological and psychological aspects of brain and behavior. Typically, studies published in Psychophysiology include psychological independent variables and noninvasive physiological dependent variables (hemodynamic, optical, and electromagnetic brain imaging and/or peripheral measures such as respiratory sinus arrhythmia, electromyography, pupillography, and many others). The majority of studies published in the journal involve human participants, but work using animal models of such phenomena is occasionally published. Psychophysiology welcomes submissions on new theoretical, empirical, and methodological advances in: cognitive, affective, clinical and social neuroscience, psychopathology and psychiatry, health science and behavioral medicine, and biomedical engineering. The journal publishes theoretical papers, evaluative reviews of literature, empirical papers, and methodological papers, with submissions welcome from scientists in any fields mentioned above.