{"title":"Methodological approaches in vitrification: Enhancing viability of bovine oocytes and in vitro-produced embryos.","authors":"Teresa Mogas, Tania García-Martínez, Iris Martínez-Rodero","doi":"10.1111/rda.14623","DOIUrl":null,"url":null,"abstract":"<p><p>Cryopreservation of bovine oocytes and embryos is essential for long-term preservation and widespread distribution of genetic material, particularly in bovine in vitro embryo production, which has witnessed substantial growth in the past decade due to advancements in reproductive biotechnologies. Among current cryopreservation methods, vitrification has emerged as the preferred cryopreservation technique over slow freezing for preserving oocytes and in vitro-produced (IVP) embryos, as it effectively addresses membrane chilling injury and ice crystal formation. Nonetheless, challenges remain and a simple and robust vitrification protocol that guarantees the efficiency and viability after warming has not yet been developed. Furthermore, although slow cooling can easily be adapted for direct transfer, an easier and more practical vitrification protocol for IVP embryos is required to allow the transfer of IVP embryos on farms using in-straw dilution. In addition, the susceptibility of bovine oocytes and embryos to cryoinjuries highlights the need for novel strategies to improve their cryotolerance. This manuscript examines various methodological approaches for increasing the viability of bovine oocytes and IVP embryos during vitrification. Strategies such as modifying lipid content or mitigating oxidative damage have shown promise in improving cryotolerance. Additionally, mathematical modelling of oocyte and embryo membrane permeability has facilitated the rational design of cryopreservation protocols, optimizing the exposure time and concentration of cryoprotectants to reduce cytotoxicity.</p>","PeriodicalId":21035,"journal":{"name":"Reproduction in Domestic Animals","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction in Domestic Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/rda.14623","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cryopreservation of bovine oocytes and embryos is essential for long-term preservation and widespread distribution of genetic material, particularly in bovine in vitro embryo production, which has witnessed substantial growth in the past decade due to advancements in reproductive biotechnologies. Among current cryopreservation methods, vitrification has emerged as the preferred cryopreservation technique over slow freezing for preserving oocytes and in vitro-produced (IVP) embryos, as it effectively addresses membrane chilling injury and ice crystal formation. Nonetheless, challenges remain and a simple and robust vitrification protocol that guarantees the efficiency and viability after warming has not yet been developed. Furthermore, although slow cooling can easily be adapted for direct transfer, an easier and more practical vitrification protocol for IVP embryos is required to allow the transfer of IVP embryos on farms using in-straw dilution. In addition, the susceptibility of bovine oocytes and embryos to cryoinjuries highlights the need for novel strategies to improve their cryotolerance. This manuscript examines various methodological approaches for increasing the viability of bovine oocytes and IVP embryos during vitrification. Strategies such as modifying lipid content or mitigating oxidative damage have shown promise in improving cryotolerance. Additionally, mathematical modelling of oocyte and embryo membrane permeability has facilitated the rational design of cryopreservation protocols, optimizing the exposure time and concentration of cryoprotectants to reduce cytotoxicity.
期刊介绍:
The journal offers comprehensive information concerning physiology, pathology, and biotechnology of reproduction. Topical results are currently published in original papers, reviews, and short communications with particular attention to investigations on practicable techniques.
Carefully selected reports, e. g. on embryo transfer and associated biotechnologies, gene transfer, and spermatology provide a link between basic research and clinical application. The journal applies to breeders, veterinarians, and biologists, and is also of interest in human medicine. Interdisciplinary cooperation is documented in the proceedings of the joint annual meetings.
Fields of interest: Animal reproduction and biotechnology with special regard to investigations on applied and clinical research.