ExtendinG SUb-DAily River Discharge data over INdia (GUARDIAN).

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-10-18 DOI:10.1038/s41597-024-03923-8
Girish Patidar, J Indu, Subhankar Karmakar
{"title":"ExtendinG SUb-DAily River Discharge data over INdia (GUARDIAN).","authors":"Girish Patidar, J Indu, Subhankar Karmakar","doi":"10.1038/s41597-024-03923-8","DOIUrl":null,"url":null,"abstract":"<p><p>River discharge information is crucial for various applications, but the measurement process often remains impeded by factors that hinder near real-time (NRT) data availability in India. However, leveraging telemetry-based water surface elevation (WSE) data across the country provides an opportunity to convert it into river discharge. This conversion is made possible by utilizing rating curves (RCs) derived from historical collocated measurements of WSE and discharge. In this study, NRT WSE from the Central Water Commission (CWC) flood portal is obtained via the web-scraping tool. Through the application of RCs, discharge data is extended across 210 gauging stations in India from the year 2020 to the present, encompassing sub-daily discharge during the non-monsoon and hourly discharge series during monsoon (June-September) across the Indian rivers. Annually, the study generated over 800,000 discharge data points for Indian rivers, accounting for more than 4000 discharge measurements per station annually. These comprehensive datasets provide valuable insights for water resource and flood management research, offering NRT access to WSE, and discharge, along with the local RCs.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1155"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-03923-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

River discharge information is crucial for various applications, but the measurement process often remains impeded by factors that hinder near real-time (NRT) data availability in India. However, leveraging telemetry-based water surface elevation (WSE) data across the country provides an opportunity to convert it into river discharge. This conversion is made possible by utilizing rating curves (RCs) derived from historical collocated measurements of WSE and discharge. In this study, NRT WSE from the Central Water Commission (CWC) flood portal is obtained via the web-scraping tool. Through the application of RCs, discharge data is extended across 210 gauging stations in India from the year 2020 to the present, encompassing sub-daily discharge during the non-monsoon and hourly discharge series during monsoon (June-September) across the Indian rivers. Annually, the study generated over 800,000 discharge data points for Indian rivers, accounting for more than 4000 discharge measurements per station annually. These comprehensive datasets provide valuable insights for water resource and flood management research, offering NRT access to WSE, and discharge, along with the local RCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将 SUb-DAily 河流排水数据扩展到印度(GUARDIAN)。
河流排泄量信息对各种应用都至关重要,但在印度,测量过程经常会受到各种因素的阻碍,这些因素妨碍了近实时(NRT)数据的可用性。不过,利用全国各地基于遥测的水面高程(WSE)数据,就有机会将其转换为河流排水量。这种转换可以利用从历史上的 WSE 和排水量同位测量中得出的额定曲线 (RC)。在本研究中,通过网络抓取工具从中央水利委员会(CWC)洪水门户网站获取了 NRT WSE。通过应用 RC,从 2020 年至今,印度 210 个测量站的排泄量数据得到了扩展,包括印度河流非季风期间的次日排泄量和季风期间(6 月至 9 月)的小时排泄量序列。这项研究每年为印度河流生成 80 多万个排泄量数据点,每个测站每年测量的排泄量超过 4000 个。这些全面的数据集为水资源和洪水管理研究提供了宝贵的见解,为国家研究机构提供了获取 WSE 和排水量以及当地 RC 的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A chromosome-level genome assembly of the heteronomous hyperparasitoid wasp Encarsia sophia. A geospatial dataset of lichen key attributes in the Earth's three poles. An fMRI dataset in response to large-scale short natural dynamic facial expression videos. Chromosome-level genome assembly of the mud carp (Cirrhinus molitorella) using PacBio HiFi and Hi-C sequencing. An annual land cover dataset for the Baltic Sea Region with crop types and peat bogs at 30 m from 2000 to 2022.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1