{"title":"Potential toxic effects linked to taurine interactions with alkanolamines and diisopropylamine.","authors":"Erica Pensini, Caitlyn Hsiung, Nour Kashlan","doi":"10.1007/s43832-024-00146-1","DOIUrl":null,"url":null,"abstract":"<p><p>Diisopropylamine (DIPA), aminomethyl propanol (AMP), amino ethoxy ethanol (AEE), diethanolamine (DEA), ethanolamine (EA), pyridine (PYR) and methyl diethanolamine (MDEA) are used for carbon capture and to sweeten sour gas, and are found in groundwater. They are also used in cosmetic products. Taurine is abundant in the body, with key biological functions linked to its charged SO groups. Interactions between SO and amines have not been studied, but can strongly affect the biological function of taurine. Fourier transform infrared spectroscopy indicates SO…HN hydrogen bonding between taurine and DIPA, AMP, AEE, DEA, EA and MDEA. These interactions induce the formation of hydrophobic amine-taurine clusters, thus decreasing amine miscibility in water, as revealed by light scattering. This effect is most marked for DIPA, leading to turbid mixtures indicative of micron-sized droplets. PYR and taurine likely interact via S…N bonding. This study offers insights regarding potential mechanisms of amine toxicity to humans.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43832-024-00146-1.</p>","PeriodicalId":29971,"journal":{"name":"Discover Water","volume":"4 1","pages":"86"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489302/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43832-024-00146-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diisopropylamine (DIPA), aminomethyl propanol (AMP), amino ethoxy ethanol (AEE), diethanolamine (DEA), ethanolamine (EA), pyridine (PYR) and methyl diethanolamine (MDEA) are used for carbon capture and to sweeten sour gas, and are found in groundwater. They are also used in cosmetic products. Taurine is abundant in the body, with key biological functions linked to its charged SO groups. Interactions between SO and amines have not been studied, but can strongly affect the biological function of taurine. Fourier transform infrared spectroscopy indicates SO…HN hydrogen bonding between taurine and DIPA, AMP, AEE, DEA, EA and MDEA. These interactions induce the formation of hydrophobic amine-taurine clusters, thus decreasing amine miscibility in water, as revealed by light scattering. This effect is most marked for DIPA, leading to turbid mixtures indicative of micron-sized droplets. PYR and taurine likely interact via S…N bonding. This study offers insights regarding potential mechanisms of amine toxicity to humans.
Graphical abstract:
Supplementary information: The online version contains supplementary material available at 10.1007/s43832-024-00146-1.
期刊介绍:
Discover Water is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is an open access, community-focussed journal publishing research from across all fields relevant to water research.
Discover Water is a broad, open access journal publishing research from across all fields relevant to the science and technology of water research and management. Discover Water covers not only research on water as a resource, for example for drinking, agriculture and sanitation, but also the impact of society on water, such as the effect of human activities on water availability and pollution. As such it looks at the overall role of water at a global level, including physical, chemical, biological, and ecological processes, and social, policy, and public health implications. It is also intended that articles published in Discover Water may help to support and accelerate United Nations Sustainable Development Goal 6: ‘Clean water and sanitation’.