bcRflow: a Nextflow pipeline for characterizing B cell receptor repertoires from non-targeted transcriptomic data.

IF 4 Q1 GENETICS & HEREDITY NAR Genomics and Bioinformatics Pub Date : 2024-10-15 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae137
Brent T Schlegel, Michael Morikone, Fangping Mu, Wan-Yee Tang, Gary Kohanbash, Dhivyaa Rajasundaram
{"title":"bcRflow: a Nextflow pipeline for characterizing B cell receptor repertoires from non-targeted transcriptomic data.","authors":"Brent T Schlegel, Michael Morikone, Fangping Mu, Wan-Yee Tang, Gary Kohanbash, Dhivyaa Rajasundaram","doi":"10.1093/nargab/lqae137","DOIUrl":null,"url":null,"abstract":"<p><p>B cells play a critical role in the adaptive recognition of foreign antigens through diverse receptor generation. While targeted immune sequencing methods are commonly used to profile B cell receptors (BCRs), they have limitations in cost and tissue availability. Analyzing B cell receptor profiling from non-targeted transcriptomics data is a promising alternative, but a systematic pipeline integrating tools for accurate immune repertoire extraction is lacking. Here, we present bcRflow, a Nextflow pipeline designed to characterize BCR repertoires from non-targeted transcriptomics data, with functional modules for alignment, processing, and visualization. bcRflow is a comprehensive, reproducible, and scalable pipeline that can run on high-performance computing clusters, cloud-based computing resources like Amazon Web Services (AWS), the Open OnDemand framework, or even local desktops. bcRflow utilizes institutional configurations provided by nf-core to ensure maximum portability and accessibility. To demonstrate the functionality of the bcRflow pipeline, we analyzed a public dataset of bulk transcriptomic samples from COVID-19 patients and healthy controls. We have shown that bcRflow streamlines the analysis of BCR repertoires from non-targeted transcriptomics data, providing valuable insights into the B cell immune response for biological and clinical research. bcRflow is available at https://github.com/Bioinformatics-Core-at-Childrens/bcRflow.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae137"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474772/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

B cells play a critical role in the adaptive recognition of foreign antigens through diverse receptor generation. While targeted immune sequencing methods are commonly used to profile B cell receptors (BCRs), they have limitations in cost and tissue availability. Analyzing B cell receptor profiling from non-targeted transcriptomics data is a promising alternative, but a systematic pipeline integrating tools for accurate immune repertoire extraction is lacking. Here, we present bcRflow, a Nextflow pipeline designed to characterize BCR repertoires from non-targeted transcriptomics data, with functional modules for alignment, processing, and visualization. bcRflow is a comprehensive, reproducible, and scalable pipeline that can run on high-performance computing clusters, cloud-based computing resources like Amazon Web Services (AWS), the Open OnDemand framework, or even local desktops. bcRflow utilizes institutional configurations provided by nf-core to ensure maximum portability and accessibility. To demonstrate the functionality of the bcRflow pipeline, we analyzed a public dataset of bulk transcriptomic samples from COVID-19 patients and healthy controls. We have shown that bcRflow streamlines the analysis of BCR repertoires from non-targeted transcriptomics data, providing valuable insights into the B cell immune response for biological and clinical research. bcRflow is available at https://github.com/Bioinformatics-Core-at-Childrens/bcRflow.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
bcRflow:从非靶向转录组数据表征 B 细胞受体谱系的 Nextflow 管道。
B 细胞通过产生不同的受体,在对外来抗原的适应性识别中发挥着关键作用。虽然靶向免疫测序方法常用于分析 B 细胞受体(BCR),但它们在成本和组织可用性方面存在局限性。从非靶向转录组学数据中分析 B 细胞受体图谱是一种很有前景的替代方法,但目前还缺乏一种整合了精确提取免疫基因组工具的系统管道。bcRflow 是一个全面、可重现、可扩展的管道,可以运行在高性能计算集群、亚马逊网络服务(AWS)等云计算资源、Open OnDemand 框架甚至本地台式机上。为了展示 bcRflow 管道的功能,我们分析了来自 COVID-19 患者和健康对照的批量转录组样本的公共数据集。我们的研究表明,bcRflow 简化了对非靶向转录组学数据中 BCR 重排的分析,为生物和临床研究提供了有关 B 细胞免疫反应的宝贵见解。bcRflow 可在 https://github.com/Bioinformatics-Core-at-Childrens/bcRflow 上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
期刊最新文献
Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets. AntiBody Sequence Database. Approximate nearest neighbor graph provides fast and efficient embedding with applications for large-scale biological data. Cell- and tissue-specific glycosylation pathways informed by single-cell transcriptomics. HiCrayon reveals distinct layers of multi-state 3D chromatin organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1