Protocol for generating high-fidelity proteomic profiles using DROPPS.

IF 1.3 Q4 BIOCHEMICAL RESEARCH METHODS STAR Protocols Pub Date : 2024-12-20 Epub Date: 2024-10-18 DOI:10.1016/j.xpro.2024.103397
Matthew Waas, Meinusha Govindarajan, Amanda Khoo, Charlotte Zuo, Aastha Aastha, Jilin He, Michael Woolman, Annie Ha, Brian Lin, Thomas Kislinger
{"title":"Protocol for generating high-fidelity proteomic profiles using DROPPS.","authors":"Matthew Waas, Meinusha Govindarajan, Amanda Khoo, Charlotte Zuo, Aastha Aastha, Jilin He, Michael Woolman, Annie Ha, Brian Lin, Thomas Kislinger","doi":"10.1016/j.xpro.2024.103397","DOIUrl":null,"url":null,"abstract":"<p><p>Deep mass spectrometry-based proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present a protocol for droplet-based one-pot preparation for proteomic samples (DROPPS), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. We describe steps for depositing cellular material, cell lysis, and digesting proteins in the same microliter-droplet well. We anticipate DROPPS will accelerate biology-driven proteomic research for a multitude of rare cell populations. For complete details on the use and execution of this protocol, please refer to Waas et al.<sup>1</sup>.</p>","PeriodicalId":34214,"journal":{"name":"STAR Protocols","volume":"5 4","pages":"103397"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STAR Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xpro.2024.103397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep mass spectrometry-based proteomic profiling of rare cell populations has been constrained by sample input requirements. Here, we present a protocol for droplet-based one-pot preparation for proteomic samples (DROPPS), an accessible low-input platform that generates high-fidelity proteomic profiles of 100-2,500 cells. We describe steps for depositing cellular material, cell lysis, and digesting proteins in the same microliter-droplet well. We anticipate DROPPS will accelerate biology-driven proteomic research for a multitude of rare cell populations. For complete details on the use and execution of this protocol, please refer to Waas et al.1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 DROPPS 生成高保真蛋白质组图谱的程序。
基于深度质谱的稀有细胞群蛋白质组图谱分析一直受到样品输入要求的限制。在这里,我们介绍了一种基于液滴的蛋白质组样品一锅制备(DROPPS)方案,这是一种易于使用的低投入平台,可生成 100-2,500 个细胞的高保真蛋白质组图谱。我们介绍了在同一微升液滴孔中沉积细胞材料、细胞裂解和消化蛋白质的步骤。我们预计 DROPPS 将加速多种稀有细胞群的生物学驱动蛋白质组学研究。有关使用和执行该方案的完整细节,请参阅 Waas 等人的文章1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
STAR Protocols
STAR Protocols Biochemistry, Genetics and Molecular Biology-General Biochemistry, Genetics and Molecular Biology
CiteScore
2.00
自引率
0.00%
发文量
789
审稿时长
10 weeks
期刊介绍:
期刊最新文献
Protocol for assessing T cell receptor-mediated human T cell cytotoxicity. Protocol for capturing a full transcriptome from single preimplantation embryos using So-Smart-seq. Protocol for generating splice isoform-specific mouse mutants using CRISPR-Cas9 and a minigene splicing reporter. Protocol for semisynthesis of histone H4 with site-specific modifications using irreversible sortase-mediated ligation. Protocol to detect neutral lipids with BODIPY staining in myeloid-derived suppressor cells in mouse mammary tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1