{"title":"[Effects of electroacupuncture on the inflammatory response and intestinal flora in obese rats].","authors":"Hao-Ran Tian, Yu-Dian Zhou, Da-Min Lu, Shu-Rui Yang, Wen-Wu Kang, Qian Tang, Feng-Xia Liang","doi":"10.13702/j.1000-0607.20230582","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To observe the effect of electroacupuncture (EA) on the expressions of high mobility group protein 1(HMGB1) and myeloid differentiation factor 88 (MyD88) in the small intestine and intestinal flora of obese rats, so as to explore the potential mechanism of EA to improve obesity in rats.</p><p><strong>Methods: </strong>After 1 week of acclimatization, 10 rats were randomly selected from 50 Wistar male rats as the normal group, and the rest rats were fed with high-fat diet for 8 weeks to establish the obese model. The successfully modeling rats were randomly divided into model group, EA group and sham EA group, with 10 rats in each group. Rats in the EA group were given EA (2 Hz, 1 mA) at \"Zhongwan\"(CV12), \"Guanyuan\"(CV4), \"Zusanli\" (ST36)and \"Fenglong\"(ST40). Rats in the sham EA group were given shallow stabs at acupoints of the EA group about 5 mm outwardly and the electrodes were clamped without being energized. Both groups were intervened for 10 min each time, 3 times (Monday, Wednesday and Friday) a week for 8 weeks. The body weights of the rats were measured before and after 8 weeks of intervention, respectively. The contents of serum lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α were measured by ELISA, and the protein and mRNA expressions of HMGB1 and MyD88 in the small intestine were detected by Western blot and real-time quantitative PCR, respectively. 16S rRNA sequencing was performed to determine the relative abundance and diversity of the bacterial flora in the fresh feces of rats.</p><p><strong>Results: </strong>Compared with the normal group, the body weight, serum LPS and TNF-α contents, small intestinal HMGB1 and MyD88 protein and mRNA expression levels of rats in the model group were significantly increased (<i>P</i><0.01), while the relative abundance of <i>Lactobacillus</i>, <i>Muri</i> and <i>Bifidobacterium</i> was decreased (<i>p</i><0.01), <i>Collinsella</i>, <i>Prevotella</i> and <i>Ruminococcus</i> was increased (<i>P</i><0.01). Compared with model group, the body weight, serum LPS and TNF-α contents, protein and mRNA expression levels of HMGB1 and MyD88 in both EA and sham EA groups were decreased (<i>P</i><0.01, <i>P</i><0.05), while the relative abundance of <i>Lactobacillus</i>, <i>Muri</i> and <i>Bifidobacterium</i> was increased (<i>P</i><0.01) and <i>Collinsella</i>, <i>Prevotella</i> and <i>Ruminococcus</i> decreased (<i>P</i><0.01). Comparison between EA group and sham EA group showed that, the contents of LPS and TNF-α in serum of rats in sham EA group were increased (<i>P</i><0.01, <i>P</i><0.05), the relative abundance of <i>Lactobacillus</i>, <i>Muri</i> and <i>Bifidobacterium</i> was lower (<i>P</i><0.05, <i>P</i><0.01), and <i>Collinsella</i>, <i>Prevotella</i> and <i>Ruminococcus</i> was higher (<i>P</i><0.01).</p><p><strong>Conclusions: </strong>EA can reduce the body weight of obese rats, which may be related to the regulation of the structure of intestinal flora and the reduction of inflammatory reactions in the small intestine.</p>","PeriodicalId":34919,"journal":{"name":"针刺研究","volume":"49 9","pages":"949-956"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"针刺研究","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13702/j.1000-0607.20230582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To observe the effect of electroacupuncture (EA) on the expressions of high mobility group protein 1(HMGB1) and myeloid differentiation factor 88 (MyD88) in the small intestine and intestinal flora of obese rats, so as to explore the potential mechanism of EA to improve obesity in rats.
Methods: After 1 week of acclimatization, 10 rats were randomly selected from 50 Wistar male rats as the normal group, and the rest rats were fed with high-fat diet for 8 weeks to establish the obese model. The successfully modeling rats were randomly divided into model group, EA group and sham EA group, with 10 rats in each group. Rats in the EA group were given EA (2 Hz, 1 mA) at "Zhongwan"(CV12), "Guanyuan"(CV4), "Zusanli" (ST36)and "Fenglong"(ST40). Rats in the sham EA group were given shallow stabs at acupoints of the EA group about 5 mm outwardly and the electrodes were clamped without being energized. Both groups were intervened for 10 min each time, 3 times (Monday, Wednesday and Friday) a week for 8 weeks. The body weights of the rats were measured before and after 8 weeks of intervention, respectively. The contents of serum lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α were measured by ELISA, and the protein and mRNA expressions of HMGB1 and MyD88 in the small intestine were detected by Western blot and real-time quantitative PCR, respectively. 16S rRNA sequencing was performed to determine the relative abundance and diversity of the bacterial flora in the fresh feces of rats.
Results: Compared with the normal group, the body weight, serum LPS and TNF-α contents, small intestinal HMGB1 and MyD88 protein and mRNA expression levels of rats in the model group were significantly increased (P<0.01), while the relative abundance of Lactobacillus, Muri and Bifidobacterium was decreased (p<0.01), Collinsella, Prevotella and Ruminococcus was increased (P<0.01). Compared with model group, the body weight, serum LPS and TNF-α contents, protein and mRNA expression levels of HMGB1 and MyD88 in both EA and sham EA groups were decreased (P<0.01, P<0.05), while the relative abundance of Lactobacillus, Muri and Bifidobacterium was increased (P<0.01) and Collinsella, Prevotella and Ruminococcus decreased (P<0.01). Comparison between EA group and sham EA group showed that, the contents of LPS and TNF-α in serum of rats in sham EA group were increased (P<0.01, P<0.05), the relative abundance of Lactobacillus, Muri and Bifidobacterium was lower (P<0.05, P<0.01), and Collinsella, Prevotella and Ruminococcus was higher (P<0.01).
Conclusions: EA can reduce the body weight of obese rats, which may be related to the regulation of the structure of intestinal flora and the reduction of inflammatory reactions in the small intestine.
期刊介绍:
Acupuncture Research was founded in 1976. It is an acupuncture academic journal supervised by the State Administration of Traditional Chinese Medicine, co-sponsored by the Institute of Acupuncture of the China Academy of Chinese Medical Sciences and the Chinese Acupuncture Association. This journal is characterized by "basic experimental research as the main focus, taking into account clinical research and reporting". It is the only journal in my country that focuses on reporting the mechanism of action of acupuncture.
The journal has been changed to a monthly journal since 2018, published on the 25th of each month, and printed in full color. The manuscript acceptance rate is about 10%, and provincial and above funded projects account for about 80% of the total published papers, reflecting the latest scientific research results in the acupuncture field and has a high academic level. Main columns: mechanism discussion, clinical research, acupuncture anesthesia, meridians and acupoints, theoretical discussion, ideas and methods, literature research, etc.