Big data for imaging assessment in glaucoma.

IF 1 Q4 OPHTHALMOLOGY Taiwan Journal of Ophthalmology Pub Date : 2024-09-13 eCollection Date: 2024-07-01 DOI:10.4103/tjo.TJO-D-24-00079
Douglas R da Costa, Felipe A Medeiros
{"title":"Big data for imaging assessment in glaucoma.","authors":"Douglas R da Costa, Felipe A Medeiros","doi":"10.4103/tjo.TJO-D-24-00079","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is the leading cause of irreversible blindness worldwide, with many individuals unaware of their condition until advanced stages, resulting in significant visual field impairment. Despite effective treatments, over 110 million people are projected to have glaucoma by 2040. Early detection and reliable monitoring are crucial to prevent vision loss. With the rapid development of computational technologies, artificial intelligence (AI) and deep learning (DL) algorithms are emerging as potential tools for screening, diagnosing, and monitoring glaucoma progression. Leveraging vast data sources, these technologies promise to enhance clinical practice and public health outcomes by enabling earlier disease detection, progression forecasting, and deeper understanding of underlying mechanisms. This review evaluates the use of Big Data and AI in glaucoma research, providing an overview of most relevant topics and discussing various models for screening, diagnosis, monitoring disease progression, correlating structural and functional changes, assessing image quality, and exploring innovative technologies such as generative AI.</p>","PeriodicalId":44978,"journal":{"name":"Taiwan Journal of Ophthalmology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwan Journal of Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tjo.TJO-D-24-00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glaucoma is the leading cause of irreversible blindness worldwide, with many individuals unaware of their condition until advanced stages, resulting in significant visual field impairment. Despite effective treatments, over 110 million people are projected to have glaucoma by 2040. Early detection and reliable monitoring are crucial to prevent vision loss. With the rapid development of computational technologies, artificial intelligence (AI) and deep learning (DL) algorithms are emerging as potential tools for screening, diagnosing, and monitoring glaucoma progression. Leveraging vast data sources, these technologies promise to enhance clinical practice and public health outcomes by enabling earlier disease detection, progression forecasting, and deeper understanding of underlying mechanisms. This review evaluates the use of Big Data and AI in glaucoma research, providing an overview of most relevant topics and discussing various models for screening, diagnosis, monitoring disease progression, correlating structural and functional changes, assessing image quality, and exploring innovative technologies such as generative AI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于青光眼成像评估的大数据。
青光眼是导致全球不可逆转性失明的主要原因,许多人直到晚期才意识到自己的病情,导致严重的视野损伤。尽管有有效的治疗方法,但预计到 2040 年,将有超过 1.1 亿人患有青光眼。早期发现和可靠监测对防止视力丧失至关重要。随着计算技术的快速发展,人工智能(AI)和深度学习(DL)算法正在成为筛查、诊断和监测青光眼进展的潜在工具。利用庞大的数据源,这些技术有望通过更早地发现疾病、预测病情发展和深入了解潜在机制来提高临床实践和公共卫生成果。本综述评估了大数据和人工智能在青光眼研究中的应用,概述了最相关的主题,讨论了用于筛查、诊断、监测疾病进展、关联结构和功能变化、评估图像质量以及探索生成式人工智能等创新技术的各种模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
9.10%
发文量
68
审稿时长
19 weeks
期刊最新文献
Advancing glaucoma care with big data and artificial intelligence innovations. Application of artificial intelligence in glaucoma care: An updated review. Artificial intelligence and big data integration in anterior segment imaging for glaucoma. Big data and electronic health records for glaucoma research. Big data for imaging assessment in glaucoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1