Big data in visual field testing for glaucoma.

IF 1 Q4 OPHTHALMOLOGY Taiwan Journal of Ophthalmology Pub Date : 2024-09-13 eCollection Date: 2024-07-01 DOI:10.4103/tjo.TJO-D-24-00059
Alex T Pham, Annabelle A Pan, Jithin Yohannan
{"title":"Big data in visual field testing for glaucoma.","authors":"Alex T Pham, Annabelle A Pan, Jithin Yohannan","doi":"10.4103/tjo.TJO-D-24-00059","DOIUrl":null,"url":null,"abstract":"<p><p>Recent technological advancements and the advent of ever-growing databases in health care have fueled the emergence of \"big data\" analytics. Big data has the potential to revolutionize health care, particularly ophthalmology, given the data-intensive nature of the medical specialty. As one of the leading causes of irreversible blindness worldwide, glaucoma is an ocular disease that receives significant interest for developing innovations in eye care. Among the most vital sources of data in glaucoma is visual field (VF) testing, which stands as a cornerstone for diagnosing and managing the disease. The expanding accessibility of large VF databases has led to a surge in studies investigating various applications of big data analytics in glaucoma. In this study, we review the use of big data for evaluating the reliability of VF tests, gaining insights into real-world clinical practices and outcomes, understanding new disease associations and risk factors, characterizing the patterns of VF loss, defining the structure-function relationship of glaucoma, enhancing early diagnosis or earlier detection of progression, informing clinical decisions, and improving clinical trials. Equally important, we discuss current challenges in big data analytics and future directions for improvement.</p>","PeriodicalId":44978,"journal":{"name":"Taiwan Journal of Ophthalmology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwan Journal of Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tjo.TJO-D-24-00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent technological advancements and the advent of ever-growing databases in health care have fueled the emergence of "big data" analytics. Big data has the potential to revolutionize health care, particularly ophthalmology, given the data-intensive nature of the medical specialty. As one of the leading causes of irreversible blindness worldwide, glaucoma is an ocular disease that receives significant interest for developing innovations in eye care. Among the most vital sources of data in glaucoma is visual field (VF) testing, which stands as a cornerstone for diagnosing and managing the disease. The expanding accessibility of large VF databases has led to a surge in studies investigating various applications of big data analytics in glaucoma. In this study, we review the use of big data for evaluating the reliability of VF tests, gaining insights into real-world clinical practices and outcomes, understanding new disease associations and risk factors, characterizing the patterns of VF loss, defining the structure-function relationship of glaucoma, enhancing early diagnosis or earlier detection of progression, informing clinical decisions, and improving clinical trials. Equally important, we discuss current challenges in big data analytics and future directions for improvement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青光眼视野测试中的大数据。
近年来,医疗保健领域的技术进步和不断增长的数据库推动了 "大数据 "分析法的出现。大数据有可能彻底改变医疗保健行业,尤其是眼科,因为眼科是数据密集型的医学专业。青光眼是导致全球不可逆转性失明的主要原因之一,它是一种眼科疾病,在眼科护理领域的创新发展中备受关注。青光眼最重要的数据来源之一是视野(VF)检测,它是诊断和管理该疾病的基石。随着大型视野数据库可访问性的不断扩大,调查大数据分析在青光眼中的各种应用的研究激增。在本研究中,我们回顾了大数据在以下方面的应用:评估VF测试的可靠性、深入了解真实世界的临床实践和结果、了解新的疾病关联和风险因素、描述VF丧失的模式、定义青光眼的结构-功能关系、加强早期诊断或更早发现病情发展、为临床决策提供信息以及改进临床试验。同样重要的是,我们将讨论当前大数据分析面临的挑战和未来的改进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
9.10%
发文量
68
审稿时长
19 weeks
期刊最新文献
Advancing glaucoma care with big data and artificial intelligence innovations. Application of artificial intelligence in glaucoma care: An updated review. Artificial intelligence and big data integration in anterior segment imaging for glaucoma. Big data and electronic health records for glaucoma research. Big data for imaging assessment in glaucoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1