Ademola Isaac Adebimpe, Sajjad Foroughi, Branko Bijeljic, Martin J Blunt
{"title":"Percolation without trapping: How Ostwald ripening during two-phase displacement in porous media alters capillary pressure and relative permeability.","authors":"Ademola Isaac Adebimpe, Sajjad Foroughi, Branko Bijeljic, Martin J Blunt","doi":"10.1103/PhysRevE.110.035105","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional measurements of two-phase flow in porous media often use completely immiscible fluids, or are performed over time scales of days to weeks. If applied to the study of gas storage and recovery, these measurements do not properly account for Ostwald ripening, significantly overestimating the amount of trapping and hysteresis. When there is transport of dissolved species in the aqueous phase, local capillary equilibrium is achieved: this may take weeks to months on the centimeter-sized samples on which measurements are performed. However, in most subsurface applications where the two phases reside for many years, equilibrium can be achieved. We demonstrate that in this case, two-phase displacement in porous media needs to be modeled as percolation without trapping. A pore network model is used to quantify how to convert measurements of trapped saturation, capillary pressure and relative permeability made ignoring Ostwald ripening to account for this effect. We show that conventional measurements overestimate the amount of capillary trapping by 20-25%.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.035105","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional measurements of two-phase flow in porous media often use completely immiscible fluids, or are performed over time scales of days to weeks. If applied to the study of gas storage and recovery, these measurements do not properly account for Ostwald ripening, significantly overestimating the amount of trapping and hysteresis. When there is transport of dissolved species in the aqueous phase, local capillary equilibrium is achieved: this may take weeks to months on the centimeter-sized samples on which measurements are performed. However, in most subsurface applications where the two phases reside for many years, equilibrium can be achieved. We demonstrate that in this case, two-phase displacement in porous media needs to be modeled as percolation without trapping. A pore network model is used to quantify how to convert measurements of trapped saturation, capillary pressure and relative permeability made ignoring Ostwald ripening to account for this effect. We show that conventional measurements overestimate the amount of capillary trapping by 20-25%.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.