Exploring the Impact of Developmental Clearance Saturation on Propylene Glycol Exposure in Adults and Term Neonates Using Physiologically Based Pharmacokinetic Modeling.
Olusola Olafuyi, Robin Michelet, Michael Garle, Karel Allegaert
{"title":"Exploring the Impact of Developmental Clearance Saturation on Propylene Glycol Exposure in Adults and Term Neonates Using Physiologically Based Pharmacokinetic Modeling.","authors":"Olusola Olafuyi, Robin Michelet, Michael Garle, Karel Allegaert","doi":"10.1002/jcph.6150","DOIUrl":null,"url":null,"abstract":"<p><p>Propylene glycol (PG) is a pharmaceutical excipient which is generally regarded as safe (GRAS), though clinical toxicity has been reported. PG toxicity has been attributed to accumulation due to saturation of the alcohol dehydrogenase (ADH)-mediated clearance pathway. This study aims to explore the impact of the saturation of ADH-mediated PG metabolism on its developmental clearance in adults and neonates and assess the impact of a range of doses on PG clearance saturation and toxicity. Physiologically based pharmacokinetic (PBPK) models for PG in adults and term neonates were developed using maximum velocity (V<sub>max</sub>) and Michaelis-Menten's constant (K<sub>m</sub>) of ADH-mediated metabolism determined in vitro in human liver cytosol, published physicochemical, drug-related and ADH ontogeny parameters. The models were validated and used to determine the impact of dosing regimen on PG clearance saturation and toxicity in adults and neonates. The V<sub>max</sub> and K<sub>m</sub> of PG in human liver cytosol were 1.57 nmol/min/mg protein and 25.1 mM, respectively. The PG PBPK model adequately described PG PK profiles in adults and neonates. The PG dosing regimens associated with saturation and toxicity were dependent on both dose amount and cumulative in standard dosing frequencies. Doses resulting in saturation were higher than those associated with clinically observed toxicity. In individuals without impaired clearance or when PG exposure is through formulations that contain excipients with possible interaction with PG, a total daily dose of 100-200 mg/kg/day in adults and 25-50 mg/kg/day in neonates is unlikely to result in toxic PG levels or PG clearance saturation.</p>","PeriodicalId":48908,"journal":{"name":"Journal of Clinical Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcph.6150","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Propylene glycol (PG) is a pharmaceutical excipient which is generally regarded as safe (GRAS), though clinical toxicity has been reported. PG toxicity has been attributed to accumulation due to saturation of the alcohol dehydrogenase (ADH)-mediated clearance pathway. This study aims to explore the impact of the saturation of ADH-mediated PG metabolism on its developmental clearance in adults and neonates and assess the impact of a range of doses on PG clearance saturation and toxicity. Physiologically based pharmacokinetic (PBPK) models for PG in adults and term neonates were developed using maximum velocity (Vmax) and Michaelis-Menten's constant (Km) of ADH-mediated metabolism determined in vitro in human liver cytosol, published physicochemical, drug-related and ADH ontogeny parameters. The models were validated and used to determine the impact of dosing regimen on PG clearance saturation and toxicity in adults and neonates. The Vmax and Km of PG in human liver cytosol were 1.57 nmol/min/mg protein and 25.1 mM, respectively. The PG PBPK model adequately described PG PK profiles in adults and neonates. The PG dosing regimens associated with saturation and toxicity were dependent on both dose amount and cumulative in standard dosing frequencies. Doses resulting in saturation were higher than those associated with clinically observed toxicity. In individuals without impaired clearance or when PG exposure is through formulations that contain excipients with possible interaction with PG, a total daily dose of 100-200 mg/kg/day in adults and 25-50 mg/kg/day in neonates is unlikely to result in toxic PG levels or PG clearance saturation.
期刊介绍:
The Journal of Clinical Pharmacology (JCP) is a Human Pharmacology journal designed to provide physicians, pharmacists, research scientists, regulatory scientists, drug developers and academic colleagues a forum to present research in all aspects of Clinical Pharmacology. This includes original research in pharmacokinetics, pharmacogenetics/pharmacogenomics, pharmacometrics, physiologic based pharmacokinetic modeling, drug interactions, therapeutic drug monitoring, regulatory sciences (including unique methods of data analysis), special population studies, drug development, pharmacovigilance, womens’ health, pediatric pharmacology, and pharmacodynamics. Additionally, JCP publishes review articles, commentaries and educational manuscripts. The Journal also serves as an instrument to disseminate Public Policy statements from the American College of Clinical Pharmacology.