Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders.
Janet L Cunningham, Jennifer Frankovich, Robert A Dubin, Erika Pedrosa, Refia Nur Baykara, Noelle Cathleen Schlenk, Shahina B Maqbool, Hedwig Dolstra, Jacqueline Marino, Jacob Edinger, Julia Shea, Gonzalo Laje, Sigrid M A Swagemakers, Siamala Sinnadurai, Zhengdong D Zhang, Jhih-Rong Lin, Peter van der Spek, Herbert M Lachman
{"title":"Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders.","authors":"Janet L Cunningham, Jennifer Frankovich, Robert A Dubin, Erika Pedrosa, Refia Nur Baykara, Noelle Cathleen Schlenk, Shahina B Maqbool, Hedwig Dolstra, Jacqueline Marino, Jacob Edinger, Julia Shea, Gonzalo Laje, Sigrid M A Swagemakers, Siamala Sinnadurai, Zhengdong D Zhang, Jhih-Rong Lin, Peter van der Spek, Herbert M Lachman","doi":"10.1159/000541908","DOIUrl":null,"url":null,"abstract":"<p><p>Acute onset of severe psychiatric symptoms or regression may occur in children with premorbid neurodevelopmental disorders, although typically developing children can also be affected. Infections or other stressors are likely triggers. The underlying causes are unclear, but a current hypothesis suggests the convergence of genes that influence neuronal and immunological function. We previously identified 11 genes in Pediatric Acute-Onset Neuropsychiatry Syndrome (PANS), in which two classes of genes related to either synaptic function or the immune system were found. Among the latter, three affect the DNA damage response (DDR): PPM1D, CHK2, and RAG1. We now report an additional 17 cases with mutations in PPM1D and other DDR genes in patients with acute onset of psychiatric symptoms and/or regression that their clinicians classified as PANS or another inflammatory brain condition. The genes include clusters affecting p53 DNA repair (PPM1D, ATM, ATR, 53BP1, and RMRP), and the Fanconi Anemia Complex (FANCE, SLX4/FANCP, FANCA, FANCI, and FANCC). We hypothesize that defects in DNA repair genes, in the context of infection or other stressors, could contribute to decompensated states through an increase in genomic instability with a concomitant accumulation of cytosolic DNA in immune cells triggering DNA sensors, such as cGAS-STING and AIM2 inflammasomes, as well as central deficits on neuroplasticity. In addition, increased senescence and defective apoptosis affecting immunological responses could be playing a role. These compelling preliminary findings motivate further genetic and functional characterization as the downstream impact of DDR deficits may point to novel treatment strategies.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000541908","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute onset of severe psychiatric symptoms or regression may occur in children with premorbid neurodevelopmental disorders, although typically developing children can also be affected. Infections or other stressors are likely triggers. The underlying causes are unclear, but a current hypothesis suggests the convergence of genes that influence neuronal and immunological function. We previously identified 11 genes in Pediatric Acute-Onset Neuropsychiatry Syndrome (PANS), in which two classes of genes related to either synaptic function or the immune system were found. Among the latter, three affect the DNA damage response (DDR): PPM1D, CHK2, and RAG1. We now report an additional 17 cases with mutations in PPM1D and other DDR genes in patients with acute onset of psychiatric symptoms and/or regression that their clinicians classified as PANS or another inflammatory brain condition. The genes include clusters affecting p53 DNA repair (PPM1D, ATM, ATR, 53BP1, and RMRP), and the Fanconi Anemia Complex (FANCE, SLX4/FANCP, FANCA, FANCI, and FANCC). We hypothesize that defects in DNA repair genes, in the context of infection or other stressors, could contribute to decompensated states through an increase in genomic instability with a concomitant accumulation of cytosolic DNA in immune cells triggering DNA sensors, such as cGAS-STING and AIM2 inflammasomes, as well as central deficits on neuroplasticity. In addition, increased senescence and defective apoptosis affecting immunological responses could be playing a role. These compelling preliminary findings motivate further genetic and functional characterization as the downstream impact of DDR deficits may point to novel treatment strategies.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.