Distance guided generative adversarial network for explainable medical image classifications

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2024-10-15 DOI:10.1016/j.compmedimag.2024.102444
Xiangyu Xiong , Yue Sun , Xiaohong Liu , Wei Ke , Chan-Tong Lam , Jiangang Chen , Mingfeng Jiang , Mingwei Wang , Hui Xie , Tong Tong , Qinquan Gao , Hao Chen , Tao Tan
{"title":"Distance guided generative adversarial network for explainable medical image classifications","authors":"Xiangyu Xiong ,&nbsp;Yue Sun ,&nbsp;Xiaohong Liu ,&nbsp;Wei Ke ,&nbsp;Chan-Tong Lam ,&nbsp;Jiangang Chen ,&nbsp;Mingfeng Jiang ,&nbsp;Mingwei Wang ,&nbsp;Hui Xie ,&nbsp;Tong Tong ,&nbsp;Qinquan Gao ,&nbsp;Hao Chen ,&nbsp;Tao Tan","doi":"10.1016/j.compmedimag.2024.102444","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the potential benefits of data augmentation for mitigating data insufficiency, traditional augmentation methods primarily rely on prior intra-domain knowledge. On the other hand, advanced generative adversarial networks (GANs) generate inter-domain samples with limited variety. These previous methods make limited contributions to describing the decision boundaries for binary classification. In this paper, we propose a distance-guided GAN (DisGAN) that controls the variation degrees of generated samples in the hyperplane space. Specifically, we instantiate the idea of DisGAN by combining two ways. The first way is vertical distance GAN (VerDisGAN) where the inter-domain generation is conditioned on the vertical distances. The second way is horizontal distance GAN (HorDisGAN) where the intra-domain generation is conditioned on the horizontal distances. Furthermore, VerDisGAN can produce the class-specific regions by mapping the source images to the hyperplane. Experimental results show that DisGAN consistently outperforms the GAN-based augmentation methods with explainable binary classification. The proposed method can apply to different classification architectures and has the potential to extend to multi-class classification. We provide the code in <span><span>https://github.com/yXiangXiong/DisGAN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"118 ","pages":"Article 102444"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001216","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the potential benefits of data augmentation for mitigating data insufficiency, traditional augmentation methods primarily rely on prior intra-domain knowledge. On the other hand, advanced generative adversarial networks (GANs) generate inter-domain samples with limited variety. These previous methods make limited contributions to describing the decision boundaries for binary classification. In this paper, we propose a distance-guided GAN (DisGAN) that controls the variation degrees of generated samples in the hyperplane space. Specifically, we instantiate the idea of DisGAN by combining two ways. The first way is vertical distance GAN (VerDisGAN) where the inter-domain generation is conditioned on the vertical distances. The second way is horizontal distance GAN (HorDisGAN) where the intra-domain generation is conditioned on the horizontal distances. Furthermore, VerDisGAN can produce the class-specific regions by mapping the source images to the hyperplane. Experimental results show that DisGAN consistently outperforms the GAN-based augmentation methods with explainable binary classification. The proposed method can apply to different classification architectures and has the potential to extend to multi-class classification. We provide the code in https://github.com/yXiangXiong/DisGAN.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可解释医学图像分类的距离引导生成对抗网络。
尽管数据扩增在缓解数据不足方面具有潜在优势,但传统的扩增方法主要依赖于先前的域内知识。另一方面,先进的生成式对抗网络(GAN)生成的域间样本种类有限。这些方法对描述二元分类的决策边界贡献有限。在本文中,我们提出了一种距离引导生成式对抗网络(DisGAN),它能控制超平面空间中生成样本的变化度。具体来说,我们通过结合两种方式来实现 DisGAN 的想法。第一种方式是垂直距离 GAN(VerDisGAN),其中域间生成以垂直距离为条件。第二种方法是水平距离 GAN(HorDisGAN),域内生成以水平距离为条件。此外,VerDisGAN 可以通过将源图像映射到超平面来生成特定类别的区域。实验结果表明,DisGAN 在可解释的二元分类方面始终优于基于 GAN 的增强方法。所提出的方法可适用于不同的分类架构,并有可能扩展到多类分类。我们在 https://github.com/yXiangXiong/DisGAN 中提供了代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
Calcium deblooming in coronary computed tomography angiography via semantic-oriented generative adversarial network TTGA U-Net: Two-stage two-stream graph attention U-Net for hepatic vessel connectivity enhancement A novel generative model for brain tumor detection using magnetic resonance imaging Subtraction-free artifact-aware digital subtraction angiography image generation for head and neck vessels from motion data Prior knowledge-based multi-task learning network for pulmonary nodule classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1