Baiheng Zhu, Kehao Xiang, Tanghua Li, Xin Li, Fujun Shi
{"title":"The signature of extracellular vesicles in hypoxic breast cancer and their therapeutic engineering.","authors":"Baiheng Zhu, Kehao Xiang, Tanghua Li, Xin Li, Fujun Shi","doi":"10.1186/s12964-024-01870-w","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) currently ranks second in the global cancer incidence rate. Hypoxia is a common phenomenon in BC. Under hypoxic conditions, cells in the tumor microenvironment (TME) secrete numerous extracellular vesicles (EVs) to achieve intercellular communication and alter the metabolism of primary and metastatic tumors that shape the TME. In addition, emerging studies have indicated that hypoxia can promote resistance to tumor treatment. Engineered EVs are expected to become carriers for cancer treatment due to their high biocompatibility, low immunogenicity, high drug delivery efficiency, and ease of modification. In this review, we summarize the mechanisms of EVs in the primary TME and distant metastasis of BC under hypoxic conditions. Additionally, we highlight the potential applications of engineered EVs in mitigating the malignant phenotypes of BC cells under hypoxia.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"512"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492701/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01870-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer (BC) currently ranks second in the global cancer incidence rate. Hypoxia is a common phenomenon in BC. Under hypoxic conditions, cells in the tumor microenvironment (TME) secrete numerous extracellular vesicles (EVs) to achieve intercellular communication and alter the metabolism of primary and metastatic tumors that shape the TME. In addition, emerging studies have indicated that hypoxia can promote resistance to tumor treatment. Engineered EVs are expected to become carriers for cancer treatment due to their high biocompatibility, low immunogenicity, high drug delivery efficiency, and ease of modification. In this review, we summarize the mechanisms of EVs in the primary TME and distant metastasis of BC under hypoxic conditions. Additionally, we highlight the potential applications of engineered EVs in mitigating the malignant phenotypes of BC cells under hypoxia.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.