Assessing the Effectiveness of Audio-Visual vs. Visual Neurofeedback for Attention Enhancement: A Pilot Study with Neurological, Behavioural, and Neuropsychological Measures.
Osama Ejaz, Muhammad Abul Hasan, Faryal Raees, Maham Hammad, Saad Ahmed Qazi
{"title":"Assessing the Effectiveness of Audio-Visual vs. Visual Neurofeedback for Attention Enhancement: A Pilot Study with Neurological, Behavioural, and Neuropsychological Measures.","authors":"Osama Ejaz, Muhammad Abul Hasan, Faryal Raees, Maham Hammad, Saad Ahmed Qazi","doi":"10.1007/s10548-024-01076-w","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG) based Neurofeedback training has gained traction as a practical method for enhancing executive functions, particularly attention, among healthy individuals. The neurofeedback protocols based on EEG channel locations, frequency bands, or EEG features has been tested. However, the improvement in attention was not measured by comparing different feedback stimulus types. We believe that multisensory nature feedback even with few training sessions may induce strong effect. Therefore, this study compares the effect of audio-visual and visual feedback stimuli for attention enhancement utilizing neurophysiological, behavioural and neuropsychological measures. Total 21 subjects were recruited, undergoing six alternate days of neurofeedback training sessions to upregulate EEG beta power of frontocentral (FC5). Dwell time, fractional occupancy and transition probability were also estimated from the EEG beta power. Audiovisual group (G1) as compared to visual group (G2) demonstrate a significant increase of global EEG beta activity alongside improved dwell time (t = 2.76, p = 0.003), fractional occupancy (t = 1.73, p = 0.042) and transition probability (t = 2.46, p = 0.008) over the course of six neurofeedback training sessions. Similarly, the group (G1) shows higher scores (t = 2.13, p = 0.032) and faster reaction times (t = 2.22, p = 0.028) in Stroop task, along with increased score in Mindfulness Attention Awareness Scale (MAAS-15) questionnaire (t = 2.306, p = 0.012). Audiovisual neurofeedback may enhance training effectiveness, potentially achieving the same outcomes in fewer sessions compared to visual-only feedback. However, sufficient training days are essential for effect consolidation. This highlights the feasibility of completing neurofeedback training, a significant challenge in practice.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"7"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01076-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalogram (EEG) based Neurofeedback training has gained traction as a practical method for enhancing executive functions, particularly attention, among healthy individuals. The neurofeedback protocols based on EEG channel locations, frequency bands, or EEG features has been tested. However, the improvement in attention was not measured by comparing different feedback stimulus types. We believe that multisensory nature feedback even with few training sessions may induce strong effect. Therefore, this study compares the effect of audio-visual and visual feedback stimuli for attention enhancement utilizing neurophysiological, behavioural and neuropsychological measures. Total 21 subjects were recruited, undergoing six alternate days of neurofeedback training sessions to upregulate EEG beta power of frontocentral (FC5). Dwell time, fractional occupancy and transition probability were also estimated from the EEG beta power. Audiovisual group (G1) as compared to visual group (G2) demonstrate a significant increase of global EEG beta activity alongside improved dwell time (t = 2.76, p = 0.003), fractional occupancy (t = 1.73, p = 0.042) and transition probability (t = 2.46, p = 0.008) over the course of six neurofeedback training sessions. Similarly, the group (G1) shows higher scores (t = 2.13, p = 0.032) and faster reaction times (t = 2.22, p = 0.028) in Stroop task, along with increased score in Mindfulness Attention Awareness Scale (MAAS-15) questionnaire (t = 2.306, p = 0.012). Audiovisual neurofeedback may enhance training effectiveness, potentially achieving the same outcomes in fewer sessions compared to visual-only feedback. However, sufficient training days are essential for effect consolidation. This highlights the feasibility of completing neurofeedback training, a significant challenge in practice.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.