Luca Puce, Halil İbrahim Ceylan, Carlo Trompetto, Filippo Cotellessa, Cristina Schenone, Lucio Marinelli, Piotr Zmijewski, Nicola Luigi Bragazzi, Laura Mori
{"title":"Optimizing athletic performance through advanced nutrition strategies: can AI and digital platforms have a role in ultraendurance sports?","authors":"Luca Puce, Halil İbrahim Ceylan, Carlo Trompetto, Filippo Cotellessa, Cristina Schenone, Lucio Marinelli, Piotr Zmijewski, Nicola Luigi Bragazzi, Laura Mori","doi":"10.5114/biolsport.2024.141063","DOIUrl":null,"url":null,"abstract":"<p><p>Nutrition is vital for athletic performance, especially in ultra-endurance sports, which pose unique nutritional challenges. Despite its importance, there exist gaps in the nutrition knowledge among athletes, and emerging digital tools could potentially bridge this gap. The ULTRA-Q, a sports nutrition questionnaire adapted for ultra-endurance athletes, was used to assess the nutritional knowledge of ChatGPT-3.5, ChatGPT-4, Google Bard, and Microsoft Copilot. Their performance was compared with experienced ultra-endurance athletes, registered sports nutritionists and dietitians, and the general population. ChatGPT-4 demonstrated the highest accuracy (93%), followed by Microsoft Copilot (92%), Bard (84%), and ChatGPT-3.5 (83%). The averaged AI model achieved an overall score of 88%, with the highest score in Body Composition (94%) and the lowest in Nutrients (84%). The averaged AI model outperformed the general population by 31% points and ultra-endurance athletes by 20% points in overall knowledge. The AI model exhibited superior knowledge in Fluids, outperforming registered dietitians by 49% points, the general population by 42% points, and ultra-endurance athletes by 32% points. In Body Composition, the AI model surpassed the general population by 31% points and ultraendurance athletes by 24% points. In Supplements, it outperformed registered dietitians by 58% points and the general population by 55% points. Finally, in Nutrients and in Recovery, it outperformed the general population only, by 24% and 29% points, respectively. AI models show high proficiency in sports nutrition knowledge, potentially serving as valuable tools for nutritional education and advice. AI-generated insights could be integrated with expert human judgment for effective athlete performance optimization.</p>","PeriodicalId":55365,"journal":{"name":"Biology of Sport","volume":"41 4","pages":"305-313"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11475005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/biolsport.2024.141063","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nutrition is vital for athletic performance, especially in ultra-endurance sports, which pose unique nutritional challenges. Despite its importance, there exist gaps in the nutrition knowledge among athletes, and emerging digital tools could potentially bridge this gap. The ULTRA-Q, a sports nutrition questionnaire adapted for ultra-endurance athletes, was used to assess the nutritional knowledge of ChatGPT-3.5, ChatGPT-4, Google Bard, and Microsoft Copilot. Their performance was compared with experienced ultra-endurance athletes, registered sports nutritionists and dietitians, and the general population. ChatGPT-4 demonstrated the highest accuracy (93%), followed by Microsoft Copilot (92%), Bard (84%), and ChatGPT-3.5 (83%). The averaged AI model achieved an overall score of 88%, with the highest score in Body Composition (94%) and the lowest in Nutrients (84%). The averaged AI model outperformed the general population by 31% points and ultra-endurance athletes by 20% points in overall knowledge. The AI model exhibited superior knowledge in Fluids, outperforming registered dietitians by 49% points, the general population by 42% points, and ultra-endurance athletes by 32% points. In Body Composition, the AI model surpassed the general population by 31% points and ultraendurance athletes by 24% points. In Supplements, it outperformed registered dietitians by 58% points and the general population by 55% points. Finally, in Nutrients and in Recovery, it outperformed the general population only, by 24% and 29% points, respectively. AI models show high proficiency in sports nutrition knowledge, potentially serving as valuable tools for nutritional education and advice. AI-generated insights could be integrated with expert human judgment for effective athlete performance optimization.
期刊介绍:
Biology of Sport is the official journal of the Institute of Sport in Warsaw, Poland, published since 1984.
Biology of Sport is an international scientific peer-reviewed journal, published quarterly in both paper and electronic format. The journal publishes articles concerning basic and applied sciences in sport: sports and exercise physiology, sports immunology and medicine, sports genetics, training and testing, pharmacology, as well as in other biological aspects related to sport. Priority is given to inter-disciplinary papers.