{"title":"Multifunctional nano co-delivery system for efficiently eliminating neuroblastoma by overcoming cancer heterogeneity.","authors":"Shungen Huang, Xian Yang, Yajuan Gao, Haoying Huang, Tuanwei Li, Meng Li, Feng Wu, Hongcao Yang, Chunyan Li","doi":"10.1088/1748-605X/ad8826","DOIUrl":null,"url":null,"abstract":"<p><p>The high heterogeneity of neuroblastoma (NB) is currently the main challenge in clinical treatment, impeding the complete eradication of the tumor through monotherapy alone. In this study, we propose a combination strategy using a targeted nano co-delivery system (ADRF@Ag<sub>2</sub>Se) comprising phototheranostic agents, differentiation inducers and chemotherapy drugs for sequential therapy of NB. Upon intravenous injection, ADRF@Ag<sub>2</sub>Se demonstrates effective tumor targeting by the specific binding of AF7P to MMP14, which is overexpressed on the surface of NB cells. Subsequent implementation of local photothermal therapy (PTT) leverages the robust photothermal conversion capabilities of the amphiphilic photothermal reagent PF. This is followed by the temperature-triggered release of differentiation-inducing agent 13-<i>cis</i>-retinoic acid and chemo-drug doxorubicin to synergistically eliminate the residual lesions. This nanotherapeutic strategy facilitates<i>in vivo</i>targeted delivery and PTT under the supervision of NIR-II fluorescence, and it also enhances the chemotherapeutic response through differentiation induction of poorly differentiated cancer cells. In the NB tumor model, this co-delivery strategy effectively inhibited tumor growth and significantly prolonged the survival of the mice.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad8826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The high heterogeneity of neuroblastoma (NB) is currently the main challenge in clinical treatment, impeding the complete eradication of the tumor through monotherapy alone. In this study, we propose a combination strategy using a targeted nano co-delivery system (ADRF@Ag2Se) comprising phototheranostic agents, differentiation inducers and chemotherapy drugs for sequential therapy of NB. Upon intravenous injection, ADRF@Ag2Se demonstrates effective tumor targeting by the specific binding of AF7P to MMP14, which is overexpressed on the surface of NB cells. Subsequent implementation of local photothermal therapy (PTT) leverages the robust photothermal conversion capabilities of the amphiphilic photothermal reagent PF. This is followed by the temperature-triggered release of differentiation-inducing agent 13-cis-retinoic acid and chemo-drug doxorubicin to synergistically eliminate the residual lesions. This nanotherapeutic strategy facilitatesin vivotargeted delivery and PTT under the supervision of NIR-II fluorescence, and it also enhances the chemotherapeutic response through differentiation induction of poorly differentiated cancer cells. In the NB tumor model, this co-delivery strategy effectively inhibited tumor growth and significantly prolonged the survival of the mice.