The contribution of the vascular architecture and cerebrovascular reactivity to the BOLD signal formation across cortical depth.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2024-06-28 eCollection Date: 2024-06-01 DOI:10.1162/imag_a_00203
Emiel C A Roefs, Wouter Schellekens, Mario G Báez-Yáñez, Alex A Bhogal, Iris I A Groen, Matthias J P van Osch, Jeroen C W Siero, Natalia Petridou
{"title":"The contribution of the vascular architecture and cerebrovascular reactivity to the BOLD signal formation across cortical depth.","authors":"Emiel C A Roefs, Wouter Schellekens, Mario G Báez-Yáñez, Alex A Bhogal, Iris I A Groen, Matthias J P van Osch, Jeroen C W Siero, Natalia Petridou","doi":"10.1162/imag_a_00203","DOIUrl":null,"url":null,"abstract":"<p><p>Assessment of neuronal activity using blood oxygenation level-dependent (BOLD) is confounded by how the cerebrovascular architecture modulates hemodynamic responses. To understand brain function at the laminar level, it is crucial to distinguish neuronal signal contributions from those determined by the cortical vascular organization. Therefore, our aim was to investigate the purely vascular contribution in the BOLD signal by using vasoactive stimuli and compare that with neuronal-induced BOLD responses from a visual task. To do so, we estimated the hemodynamic response function (HRF) across cortical depth following brief visual stimulations under different conditions using ultrahigh-field (7 Tesla) functional (f)MRI. We acquired gradient-echo (GE)-echo-planar-imaging (EPI) BOLD, containing contributions from all vessel sizes, and spin-echo (SE)-EPI BOLD for which signal changes predominately originate from microvessels, to distinguish signal weighting from different vascular compartments. Non-neuronal hemodynamic changes were induced by hypercapnia and hyperoxia to estimate cerebrovascular reactivity and venous cerebral blood volume ( <math><mrow><mi>C</mi> <mi>B</mi> <mi>V</mi> <msub><mi>v</mi> <mrow><msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> </mrow> </math> ). Results show that increases in GE HRF amplitude from deeper to superficial layers coincided with increased macrovascular <math><mrow><mi>C</mi> <mi>B</mi> <mi>V</mi> <msub><mi>v</mi> <mrow><msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> </mrow> </math> . <math><mrow><mi>C</mi> <mi>B</mi> <mi>V</mi> <msub><mi>v</mi> <mrow><msub><mi>O</mi> <mn>2</mn></msub> </mrow> </msub> </mrow> </math> -normalized GE-HRF amplitudes yielded similar cortical depth profiles as SE, thereby possibly improving specificity to neuronal activation. For GE BOLD, faster onset time and shorter time-to-peak were observed toward the deeper layers. Hypercapnia reduced the amplitude of visual stimulus-induced signal responses as denoted by lower GE-HRF amplitudes and longer time-to-peak. In contrast, the SE-HRF amplitude was unaffected by hypercapnia, suggesting that these responses reflect predominantly neurovascular processes that are less contaminated by macrovascular signal contributions.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"2 ","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/imag_a_00203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assessment of neuronal activity using blood oxygenation level-dependent (BOLD) is confounded by how the cerebrovascular architecture modulates hemodynamic responses. To understand brain function at the laminar level, it is crucial to distinguish neuronal signal contributions from those determined by the cortical vascular organization. Therefore, our aim was to investigate the purely vascular contribution in the BOLD signal by using vasoactive stimuli and compare that with neuronal-induced BOLD responses from a visual task. To do so, we estimated the hemodynamic response function (HRF) across cortical depth following brief visual stimulations under different conditions using ultrahigh-field (7 Tesla) functional (f)MRI. We acquired gradient-echo (GE)-echo-planar-imaging (EPI) BOLD, containing contributions from all vessel sizes, and spin-echo (SE)-EPI BOLD for which signal changes predominately originate from microvessels, to distinguish signal weighting from different vascular compartments. Non-neuronal hemodynamic changes were induced by hypercapnia and hyperoxia to estimate cerebrovascular reactivity and venous cerebral blood volume ( C B V v O 2 ). Results show that increases in GE HRF amplitude from deeper to superficial layers coincided with increased macrovascular C B V v O 2 . C B V v O 2 -normalized GE-HRF amplitudes yielded similar cortical depth profiles as SE, thereby possibly improving specificity to neuronal activation. For GE BOLD, faster onset time and shorter time-to-peak were observed toward the deeper layers. Hypercapnia reduced the amplitude of visual stimulus-induced signal responses as denoted by lower GE-HRF amplitudes and longer time-to-peak. In contrast, the SE-HRF amplitude was unaffected by hypercapnia, suggesting that these responses reflect predominantly neurovascular processes that are less contaminated by macrovascular signal contributions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨皮层深度的血管结构和脑血管反应性对 BOLD 信号形成的贡献。
使用血液氧合水平依赖性(BOLD)评估神经元活动会受到脑血管结构如何调节血流动力学反应的影响。要想在层状水平上了解大脑功能,就必须将神经元信号贡献与皮层血管组织决定的信号贡献区分开来。因此,我们的目的是通过使用血管活性刺激来研究 BOLD 信号中纯粹的血管贡献,并将其与视觉任务中神经元诱导的 BOLD 反应进行比较。为此,我们使用超高场(7 特斯拉)功能(f)磁共振成像技术估算了不同条件下短暂视觉刺激后皮层深度的血流动力学响应函数(HRF)。我们采集了梯度回波(GE)-超平面成像(EPI)BOLD(包含所有大小血管的贡献)和自旋回波(SE)-EPI BOLD(信号变化主要来自微血管),以区分来自不同血管区的信号加权。通过高碳酸血症和高氧引起的非神经元血流动力学变化来估计脑血管反应性和静脉脑血量(C B V v O 2)。结果显示,GE HRF 振幅从深层到浅层的增加与大血管 C B V v O 2 的增加相吻合。C B V v O 2 归一化的 GE-HRF 振幅与 SE 的皮层深度剖面相似,因此可能提高了神经元激活的特异性。就 GE BOLD 而言,深层的起始时间更快,达到峰值的时间更短。高碳酸血症会降低视觉刺激诱导的信号反应的幅度,表现为 GE-HRF 幅度较低,达到峰值的时间较长。相比之下,SE-HRF 波幅不受高碳酸血症的影响,这表明这些反应主要反映的是神经血管过程,受大血管信号的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic data in generalizable, learning-based neuroimaging. Processing, evaluating, and understanding FMRI data with afni_proc.py. NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis improves brain activity detection across rodent and human functional MRI contexts. Measurement variability of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging. ECCENTRIC: A fast and unrestrained approach for high-resolution in vivo metabolic imaging at ultra-high field MR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1