Kuang-Yu Wei, Martin Gritter, A H Jan Danser, Liffert Vogt, Martin H de Borst, Joris I Rotmans, Pedro Henrique Imenez Silva, Ewout J Hoorn
{"title":"5/6 Nephrectomy impairs acute kaliuretic responses and predisposes to postprandial hyperkalemia.","authors":"Kuang-Yu Wei, Martin Gritter, A H Jan Danser, Liffert Vogt, Martin H de Borst, Joris I Rotmans, Pedro Henrique Imenez Silva, Ewout J Hoorn","doi":"10.1152/ajprenal.00195.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The susceptibility of patients with chronic kidney disease to develop postprandial hyperkalemia suggests alterations in normal kidney sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) handling, but the exact nature of these changes is largely unknown. To address this, we analyzed the natriuretic and kaliuretic responses to diuretics and acute K<sup>+</sup> loading in rats who underwent 5/6 nephrectomy (5/6Nx) and compared this with the response in sham-operated rats. The natriuretic and kaliuretic responses to furosemide, hydrochlorothiazide, and amiloride were largely similar between 5/6Nx and sham rats except for a significantly reduced kaliuretic response to hydrochlorothiazide in 5/6Nx rats. Acute dietary K<sup>+</sup> loading with either 2.5% potassium chloride or 2.5% potassium citrate caused lower natriuretic and kaliuretic responses in 5/6Nx rats compared with sham rats. This resulted in significantly higher plasma K<sup>+</sup> concentrations in 5/6Nx rats, which were accompanied by corresponding increases in plasma aldosterone. Acute K<sup>+</sup> loading caused dephosphorylation of Ste20-related proline/alanine-rich kinase and the sodium-chloride cotransporter both in sham and 5/6Nx rats. In contrast, the acute K<sup>+</sup> load decreased the Na<sup>+</sup>/hydrogen exchanger 3 and increased serum- and glucocorticoid-regulated kinase 1 and the α-subunit of the epithelial sodium channel (ENaC) only in sham rats. Together, our data show that 5/6Nx impairs the natriuretic and kaliuretic response to an acute dietary K<sup>+</sup> load, which is further characterized by a loss of ENaC adaptation and the development of postprandial hyperkalemia.<b>NEW & NOTEWORTHY</b> Rats who underwent 5/6 nephrectomy demonstrate a reduced ability to excrete an acute K<sup>+</sup> load with the development of postprandial hyperkalemia. 5/6 Nephrectomy attenuates K<sup>+</sup>-induced natriuresis and impairs ENaC regulation despite intact NCC dephosphorylation and increased plasma aldosterone. This offers a potential explanation for why patients with chronic kidney disease are predisposed to postprandial hyperkalemia.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F1005-F1012"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00195.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The susceptibility of patients with chronic kidney disease to develop postprandial hyperkalemia suggests alterations in normal kidney sodium (Na+) and potassium (K+) handling, but the exact nature of these changes is largely unknown. To address this, we analyzed the natriuretic and kaliuretic responses to diuretics and acute K+ loading in rats who underwent 5/6 nephrectomy (5/6Nx) and compared this with the response in sham-operated rats. The natriuretic and kaliuretic responses to furosemide, hydrochlorothiazide, and amiloride were largely similar between 5/6Nx and sham rats except for a significantly reduced kaliuretic response to hydrochlorothiazide in 5/6Nx rats. Acute dietary K+ loading with either 2.5% potassium chloride or 2.5% potassium citrate caused lower natriuretic and kaliuretic responses in 5/6Nx rats compared with sham rats. This resulted in significantly higher plasma K+ concentrations in 5/6Nx rats, which were accompanied by corresponding increases in plasma aldosterone. Acute K+ loading caused dephosphorylation of Ste20-related proline/alanine-rich kinase and the sodium-chloride cotransporter both in sham and 5/6Nx rats. In contrast, the acute K+ load decreased the Na+/hydrogen exchanger 3 and increased serum- and glucocorticoid-regulated kinase 1 and the α-subunit of the epithelial sodium channel (ENaC) only in sham rats. Together, our data show that 5/6Nx impairs the natriuretic and kaliuretic response to an acute dietary K+ load, which is further characterized by a loss of ENaC adaptation and the development of postprandial hyperkalemia.NEW & NOTEWORTHY Rats who underwent 5/6 nephrectomy demonstrate a reduced ability to excrete an acute K+ load with the development of postprandial hyperkalemia. 5/6 Nephrectomy attenuates K+-induced natriuresis and impairs ENaC regulation despite intact NCC dephosphorylation and increased plasma aldosterone. This offers a potential explanation for why patients with chronic kidney disease are predisposed to postprandial hyperkalemia.