Agata Wydrych , Barbara Pakuła , Patrycja Jakubek-Olszewska , Justyna Janikiewicz , Aneta M. Dobosz , Agnieszka Cudna , Marcel Rydzewski , Karolina Pierzynowska , Lidia Gaffke , Zuzanna Cyske , Estera Rintz , Iwona Kurkowska-Jastrzębska , Maciej Cwyl , Paolo Pinton , Grzegorz Węgrzyn , Werner J.H. Koopman , Agnieszka Dobrzyń , Marta Skowrońska , Magdalena Lebiedzińska-Arciszewska , Mariusz R. Wieckowski
{"title":"Metabolic alterations in fibroblasts of patients presenting with the MPAN subtype of neurodegeneration with brain iron accumulation (NBIA)","authors":"Agata Wydrych , Barbara Pakuła , Patrycja Jakubek-Olszewska , Justyna Janikiewicz , Aneta M. Dobosz , Agnieszka Cudna , Marcel Rydzewski , Karolina Pierzynowska , Lidia Gaffke , Zuzanna Cyske , Estera Rintz , Iwona Kurkowska-Jastrzębska , Maciej Cwyl , Paolo Pinton , Grzegorz Węgrzyn , Werner J.H. Koopman , Agnieszka Dobrzyń , Marta Skowrońska , Magdalena Lebiedzińska-Arciszewska , Mariusz R. Wieckowski","doi":"10.1016/j.bbadis.2024.167541","DOIUrl":null,"url":null,"abstract":"<div><div>Mutations in the following genes: <em>PANK2</em>, <em>PLA2G6</em>, <em>C19orf12</em>, <em>WDR45</em>, <em>CP</em>, <em>FA2H</em>, <em>ATP13A2</em>, <em>FTL</em>, <em>DCAF17</em>, and <em>CoASY</em> are associated with the development of different subtypes of inherited rare disease Neurodegeneration with Brain Iron Accumulation (NBIA). Additionally, recently described mutations in <em>FTH1</em>, <em>AP4M1</em>, <em>REPS1</em>, <em>SCP2</em>, <em>CRAT</em> and <em>GTPBP2</em> affecting iron and lipid metabolism also are thought to be involved in NBIA development. Four main subtypes, pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN), are responsible for up to 82 % of all NBIA cases. Here we studied fibroblasts from 11 patients with pathogenic mutations in <em>C19orf12</em>, and demonstrate various cellular aberrations. Differences between fibroblasts from healthy individuals and MPAN patients were potentiated when cells were grown under oxidative phosphorylation (OXPHOS) promoting condition suggesting an impaired metabolic flexibility. The extent of some of the cellular aberrations quantitatively correlated with disease severity, suggesting their involvement in the NBIA pathomechanism.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 1","pages":"Article 167541"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443924005350","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations in the following genes: PANK2, PLA2G6, C19orf12, WDR45, CP, FA2H, ATP13A2, FTL, DCAF17, and CoASY are associated with the development of different subtypes of inherited rare disease Neurodegeneration with Brain Iron Accumulation (NBIA). Additionally, recently described mutations in FTH1, AP4M1, REPS1, SCP2, CRAT and GTPBP2 affecting iron and lipid metabolism also are thought to be involved in NBIA development. Four main subtypes, pantothenate kinase-associated neurodegeneration (PKAN), PLA2G6-associated neurodegeneration (PLAN), mitochondrial membrane protein-associated neurodegeneration (MPAN) and beta-propeller protein-associated neurodegeneration (BPAN), are responsible for up to 82 % of all NBIA cases. Here we studied fibroblasts from 11 patients with pathogenic mutations in C19orf12, and demonstrate various cellular aberrations. Differences between fibroblasts from healthy individuals and MPAN patients were potentiated when cells were grown under oxidative phosphorylation (OXPHOS) promoting condition suggesting an impaired metabolic flexibility. The extent of some of the cellular aberrations quantitatively correlated with disease severity, suggesting their involvement in the NBIA pathomechanism.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.