A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes.

Xiao Liang, Pei Liu, Li Xue, Baiyun Chen, Wei Liu, Wanwan Shi, Yongwang Wang, Xiangtao Chen, Jiawei Luo
{"title":"A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes.","authors":"Xiao Liang, Pei Liu, Li Xue, Baiyun Chen, Wei Liu, Wanwan Shi, Yongwang Wang, Xiangtao Chen, Jiawei Luo","doi":"10.1093/bioinformatics/btae607","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge.</p><p><strong>Results: </strong>In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs.</p><p><strong>Availability and implementation: </strong>The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513014/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Recent advances in spatial transcriptomics technologies have provided multi-modality data integrating gene expression, spatial context, and histological images. Accurately identifying spatial domains and spatially variable genes is crucial for understanding tissue structures and biological functions. However, effectively combining multi-modality data to identify spatial domains and determining SVGs closely related to these spatial domains remains a challenge.

Results: In this study, we propose spatial transcriptomics multi-modality and multi-granularity collaborative learning (spaMMCL). For detecting spatial domains, spaMMCL mitigates the adverse effects of modality bias by masking portions of gene expression data, integrates gene and image features using a shared graph convolutional network, and employs graph self-supervised learning to deal with noise from feature fusion. Simultaneously, based on the identified spatial domains, spaMMCL integrates various strategies to detect potential SVGs at different granularities, enhancing their reliability and biological significance. Experimental results demonstrate that spaMMCL substantially improves the identification of spatial domains and SVGs.

Availability and implementation: The code and data of spaMMCL are available on Github: Https://github.com/liangxiao-cs/spaMMCL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于识别空间域和空间可变基因的多模态和多粒度协作学习框架。
动机空间转录组学技术的最新进展提供了整合基因表达、空间背景和组织学图像的多模态数据。准确识别空间域和空间可变基因对于了解组织结构和生物功能至关重要。然而,有效地结合多模态数据来识别空间域并确定与这些空间域密切相关的 SVGs 仍然是一项挑战:在这项研究中,我们提出了空间转录组学多模态和多粒度协作学习(spaMMCL)。为了检测空间域,spaMMCL 通过屏蔽部分基因表达数据来减轻模态偏差的不利影响,利用共享图卷积网络整合基因和图像特征,并采用图自监督学习来处理特征融合产生的噪声。同时,基于已识别的空间域,spaMMCL 整合了各种策略来检测不同粒度的潜在 SVG,从而提高了 SVG 的可靠性和生物学意义。实验结果表明,spaMMCL 大大提高了空间域和 SVG 的识别能力:spaMMCL的代码和数据可在Github上获取:Https://github.com/liangxiao-cs/spaMMCL.Supplementary information:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RUCova: Removal of Unwanted Covariance in mass cytometry data. ViraLM: Empowering Virus Discovery through the Genome Foundation Model. CVR-BBI: An Open-Source VR Platform for Multi-User Collaborative Brain to Brain Interfaces. Expert-guided protein Language Models enable accurate and blazingly fast fitness prediction. FungiFun3: Systemic gene set enrichment analysis for fungal species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1