Cleavage-Stage Embryo Segmentation Using SAM-Based Dual Branch Pipeline: Development and Evaluation with the CleavageEmbryo Dataset.

Chensheng Zhang, Xintong Shi, Xinyue Yin, Jiayi Sun, Jianhui Zhao, Yi Zhang
{"title":"Cleavage-Stage Embryo Segmentation Using SAM-Based Dual Branch Pipeline: Development and Evaluation with the CleavageEmbryo Dataset.","authors":"Chensheng Zhang, Xintong Shi, Xinyue Yin, Jiayi Sun, Jianhui Zhao, Yi Zhang","doi":"10.1093/bioinformatics/btae617","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Embryo selection is one of the critical factors in determining the success of pregnancy in in vitro fertilization (IVF) procedures. Using artificial intelligence to aid in embryo selection could effectively address the current time-consuming, expensive, subjectively influenced process of embryo assessment by trained embryologists. However, current deep learning-based methods often focus on blastocyst segmentation, grading, or predicting cell development via time-lapse videos, often overlooking morphokinetic parameters or lacking interpretability. Given the significance of both morphokinetic and morphological evaluation in predicting the implantation potential of cleavage-stage embryos, as emphasized by previous research, there is a necessity for an automated method to segment cleavage-stage embryos to improve this process.</p><p><strong>Results: </strong>In this article, we introduce the SAM-based Dual Branch Segmentation Pipeline for automated segmentation of blastomeres in cleavage-stage embryos. Leveraging the powerful segmentation capability of SAM, the instance branch conducts instance segmentation of blastomeres, while the semantic branch performs semantic segmentation of fragments. Due to the lack of publicly available datasets, we construct the CleavageEmbryo dataset, the first dataset of human cleavage-stage embryos with pixel-level annotations containing fragment information. We train and test a series of state-of-the-art segmentation algorithms on CleavageEmbryo. Our experiments demonstrate that our method outperforms existing algorithms in terms of objective metrics (mAP 0.748 on blastomeres, Dice 0.694 on fragments) and visual quality, enabling more accurate segmentation of cleavage-stage embryos.</p><p><strong>Availability and implementation: </strong>The code and sample data in this study can be found at: Https://github.com/12austincc/Cleavage-StageEmbryoSegmentation.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Embryo selection is one of the critical factors in determining the success of pregnancy in in vitro fertilization (IVF) procedures. Using artificial intelligence to aid in embryo selection could effectively address the current time-consuming, expensive, subjectively influenced process of embryo assessment by trained embryologists. However, current deep learning-based methods often focus on blastocyst segmentation, grading, or predicting cell development via time-lapse videos, often overlooking morphokinetic parameters or lacking interpretability. Given the significance of both morphokinetic and morphological evaluation in predicting the implantation potential of cleavage-stage embryos, as emphasized by previous research, there is a necessity for an automated method to segment cleavage-stage embryos to improve this process.

Results: In this article, we introduce the SAM-based Dual Branch Segmentation Pipeline for automated segmentation of blastomeres in cleavage-stage embryos. Leveraging the powerful segmentation capability of SAM, the instance branch conducts instance segmentation of blastomeres, while the semantic branch performs semantic segmentation of fragments. Due to the lack of publicly available datasets, we construct the CleavageEmbryo dataset, the first dataset of human cleavage-stage embryos with pixel-level annotations containing fragment information. We train and test a series of state-of-the-art segmentation algorithms on CleavageEmbryo. Our experiments demonstrate that our method outperforms existing algorithms in terms of objective metrics (mAP 0.748 on blastomeres, Dice 0.694 on fragments) and visual quality, enabling more accurate segmentation of cleavage-stage embryos.

Availability and implementation: The code and sample data in this study can be found at: Https://github.com/12austincc/Cleavage-StageEmbryoSegmentation.

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 SAM 的双分支管道进行分裂期胚胎分割:利用 CleavageEmbryo 数据集进行开发和评估。
动机胚胎选择是决定体外受精(IVF)过程中能否成功怀孕的关键因素之一。利用人工智能辅助胚胎选择,可以有效解决目前由训练有素的胚胎学家进行胚胎评估的过程耗时长、成本高、受主观影响大的问题。然而,目前基于深度学习的方法通常侧重于囊胚分割、分级或通过延时视频预测细胞发育情况,往往忽略了形态动力学参数或缺乏可解释性。鉴于形态动力学和形态学评估在预测分裂期胚胎植入潜力方面的重要意义,正如以往研究强调的那样,有必要采用一种自动方法来分割分裂期胚胎,以改进这一过程:在这篇文章中,我们介绍了基于 SAM 的双分支分割流水线(Dual Branch Segmentation Pipeline),用于自动分割分裂期胚胎中的胚泡。利用 SAM 强大的分割能力,实例分支对胚泡进行实例分割,而语义分支则对片段进行语义分割。由于缺乏公开可用的数据集,我们构建了裂殖胚胎数据集(CleavageEmbryo dataset),这是首个包含片段信息的像素级注释的人类裂殖期胚胎数据集。我们在 CleavageEmbryo 上训练和测试了一系列最先进的分割算法。实验证明,我们的方法在客观指标(胚泡上的 mAP 为 0.748,片段上的 Dice 为 0.694)和视觉质量上都优于现有算法,能更准确地分割裂隙期胚胎:本研究的代码和样本数据可在以下网址找到:Https://github.com/12austincc/Cleavage-StageEmbryoSegmentation.Supplementary information:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data. STRprofiler: efficient comparisons of short tandem repeat profiles for biomedical model authentication. Virtual Tissue Expression Analysis. Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation. Lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1