OpenDock: a pytorch-based open-source framework for protein-ligand docking and modelling.

Qiuyue Hu, Zechen Wang, Jintao Meng, Weifeng Li, Jingjing Guo, Yuguang Mu, Sheng Wang, Liangzhen Zheng, Yanjie Wei
{"title":"OpenDock: a pytorch-based open-source framework for protein-ligand docking and modelling.","authors":"Qiuyue Hu, Zechen Wang, Jintao Meng, Weifeng Li, Jingjing Guo, Yuguang Mu, Sheng Wang, Liangzhen Zheng, Yanjie Wei","doi":"10.1093/bioinformatics/btae628","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Molecular docking is an invaluable computational tool with broad applications in computer-aided drug design and enzyme engineering. However, current molecular docking tools are typically implemented in languages such as C++ for calculation speed, which lack flexibility and user-friendliness for further development. Moreover, validating the effectiveness of external scoring functions for molecular docking and screening within these frameworks is challenging, and implementing more efficient sampling strategies is not straightforward.</p><p><strong>Results: </strong>To address these limitations, we have developed an open-source molecular docking framework, OpenDock, based on Python and PyTorch. This framework supports the integration of multiple scoring functions; some can be utilized during molecular docking and pose optimization, while others can be used for post-processing scoring. In terms of sampling, the current version of this framework supports simulated annealing and Monte Carlo optimization. Additionally, it can be extended to include methods such as genetic algorithms and particle swarm optimization for sampling docking poses and protein side chain orientations. Distance constraints are also implemented to enable covalent docking, restricted docking or distance map constraints guided pose sampling. Overall, this framework serves as a valuable tool in drug design and enzyme engineering, offering significant flexibility for most protein-ligand modelling tasks.</p><p><strong>Availability and implementation: </strong>OpenDock is publicly available at: https://github.com/guyuehuo/opendock.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Molecular docking is an invaluable computational tool with broad applications in computer-aided drug design and enzyme engineering. However, current molecular docking tools are typically implemented in languages such as C++ for calculation speed, which lack flexibility and user-friendliness for further development. Moreover, validating the effectiveness of external scoring functions for molecular docking and screening within these frameworks is challenging, and implementing more efficient sampling strategies is not straightforward.

Results: To address these limitations, we have developed an open-source molecular docking framework, OpenDock, based on Python and PyTorch. This framework supports the integration of multiple scoring functions; some can be utilized during molecular docking and pose optimization, while others can be used for post-processing scoring. In terms of sampling, the current version of this framework supports simulated annealing and Monte Carlo optimization. Additionally, it can be extended to include methods such as genetic algorithms and particle swarm optimization for sampling docking poses and protein side chain orientations. Distance constraints are also implemented to enable covalent docking, restricted docking or distance map constraints guided pose sampling. Overall, this framework serves as a valuable tool in drug design and enzyme engineering, offering significant flexibility for most protein-ligand modelling tasks.

Availability and implementation: OpenDock is publicly available at: https://github.com/guyuehuo/opendock.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OpenDock:基于 pytorch 的蛋白质配体对接和建模开源框架。
动机:分子对接是一种宝贵的计算工具,在计算机辅助药物设计和酶工程中有着广泛的应用。然而,目前的分子对接工具通常使用 C ++ 等语言实现,计算速度较慢,缺乏灵活性和用户友好性,难以进一步发展。此外,在这些框架内验证用于分子对接和筛选的外部评分函数的有效性具有挑战性,而实施更高效的采样策略也并非易事:为了解决这些局限性,我们开发了基于 Python 和 PyTorch 的开源分子对接框架 OpenDock。该框架支持多种评分函数的集成;其中一些可在分子对接和姿势优化过程中使用,另一些则可用于后处理评分。在采样方面,该框架的当前版本支持模拟退火和蒙特卡罗优化。此外,它还可以扩展到包括遗传算法和粒子群优化等方法,用于对接姿势和蛋白质侧链方向的取样。此外,还可以通过距离约束实现共价对接、受限对接或距离图约束引导的姿势采样。总之,该框架是药物设计和酶工程的重要工具,为大多数蛋白质配体建模任务提供了极大的灵活性:OpenDock 可在以下网址公开获取Https://github.com/guyuehuo/opendock.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data. STRprofiler: efficient comparisons of short tandem repeat profiles for biomedical model authentication. Virtual Tissue Expression Analysis. Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation. Lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1