Sustainable urban water management: Evaluating two pilot-scale advanced decentralized treatment systems for removal of organic contaminants of emerging concern in reclaimed groundwater.
Misael Abenza, Francesc Labad, Oriol Gibert, Joan de Pablo, Sandra Pérez, E Vázquez-Suñé, Marc Teixidó
{"title":"Sustainable urban water management: Evaluating two pilot-scale advanced decentralized treatment systems for removal of organic contaminants of emerging concern in reclaimed groundwater.","authors":"Misael Abenza, Francesc Labad, Oriol Gibert, Joan de Pablo, Sandra Pérez, E Vázquez-Suñé, Marc Teixidó","doi":"10.1016/j.chemosphere.2024.143568","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth of population and the effects of climate change have placed unprecedented pressure on urban water supplies and pollution control. Consequently, it is essential to explore new local water resources in water-strained areas. To this end, this work focuses on evaluating pollutant removal effectiveness of decentralized treatment systems for groundwater reclamation. Two pilot-scale treatment trains, Treatment Line 1 (L1) and Treatment Line 2 (L2), which use membrane-free (with granulated activated carbon as the main process) or membrane-based (with reverse osmosis as the primary technology), were compared for their effectiveness in reducing concentrations of organic contaminants of emerging concern (CECs). Additionally, the effect of sodium hypochlorite addition for biofilm control on the contaminant removal performance was also examined. Results from the analysis of nearly 120 trace organic compounds (only 21 were detected in the raw water) showed that L2 significantly overperformed L1. Furthermore, the addition of a pre-chlorination step did not improve the removal performance. Regarding trace organic compounds, L1 without pre-chlorination averaged an overall good removal performance (94 ± 12%). However, Irbesartan, gemfibrozil and gabapentin showed moderate removals (50-90%) and Valsartan was poorly removed (<50%). After pre-chlorinating L1, the overall removal performance decreased (86 ± 20%). Nearly one third of the target contaminants showed moderate removal (50-90%), with Irbesartan and Valsartan exhibiting poor attenuations (<50%), highlighting that negatively-charged compounds were challenging to eliminate. In contrast, L2 exhibited very high removals (>99%) on all studied trace organic contaminants regardless of pre-chlorination. Our study also identified several indicator compounds to monitor CEC removal. Finally, considering the trade-offs between cost and final water use (non-potable), L1-based schemes with intermittent pre-chlorination could be the preferred implementation option. The results of this work will offer valuable insights into decentralized treatment systems, assisting decision-makers in choosing suitable approaches for sustainable urban water management.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of population and the effects of climate change have placed unprecedented pressure on urban water supplies and pollution control. Consequently, it is essential to explore new local water resources in water-strained areas. To this end, this work focuses on evaluating pollutant removal effectiveness of decentralized treatment systems for groundwater reclamation. Two pilot-scale treatment trains, Treatment Line 1 (L1) and Treatment Line 2 (L2), which use membrane-free (with granulated activated carbon as the main process) or membrane-based (with reverse osmosis as the primary technology), were compared for their effectiveness in reducing concentrations of organic contaminants of emerging concern (CECs). Additionally, the effect of sodium hypochlorite addition for biofilm control on the contaminant removal performance was also examined. Results from the analysis of nearly 120 trace organic compounds (only 21 were detected in the raw water) showed that L2 significantly overperformed L1. Furthermore, the addition of a pre-chlorination step did not improve the removal performance. Regarding trace organic compounds, L1 without pre-chlorination averaged an overall good removal performance (94 ± 12%). However, Irbesartan, gemfibrozil and gabapentin showed moderate removals (50-90%) and Valsartan was poorly removed (<50%). After pre-chlorinating L1, the overall removal performance decreased (86 ± 20%). Nearly one third of the target contaminants showed moderate removal (50-90%), with Irbesartan and Valsartan exhibiting poor attenuations (<50%), highlighting that negatively-charged compounds were challenging to eliminate. In contrast, L2 exhibited very high removals (>99%) on all studied trace organic contaminants regardless of pre-chlorination. Our study also identified several indicator compounds to monitor CEC removal. Finally, considering the trade-offs between cost and final water use (non-potable), L1-based schemes with intermittent pre-chlorination could be the preferred implementation option. The results of this work will offer valuable insights into decentralized treatment systems, assisting decision-makers in choosing suitable approaches for sustainable urban water management.