BBBper: A Machine Learning-based Online Tool for Blood-Brain Barrier (BBB) Permeability Prediction.

Pawan Kumar, Vandana Saini, Dinesh Gupta, Pooja A Chawla, Ajit Kumar
{"title":"BBBper: A Machine Learning-based Online Tool for Blood-Brain Barrier (BBB) Permeability Prediction.","authors":"Pawan Kumar, Vandana Saini, Dinesh Gupta, Pooja A Chawla, Ajit Kumar","doi":"10.2174/0118715273328174241007060331","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Neuronal disorders have affected more than 15% of the world's population, signifying the importance of continued design and development of drugs that can cross the Blood-Brain Barrier (BBB).</p><p><strong>Background: </strong>BBB limits the permeability of external compounds by 98% to maintain and regulate brain homeostasis. Hence, BBB permeability prediction is vital to predict the activity of a drug-like substance.</p><p><strong>Objective: </strong>Here, we report about developing BBBper (Blood-Brain Barrier permeability prediction) using machine learning tool.</p><p><strong>Method: </strong>A supervised machine learning-based online tool, based on physicochemical parameters to predict the BBB permeability of given chemical compounds was developed. The user-end webpage was developed in HTML and linked with back-end server by a python script to run user queries and results.</p><p><strong>Result: </strong>BBBper uses a random forest algorithm at the back end, showing 97% accuracy on the external dataset, compared to 70-92% accuracy of currently available web-based BBB permeability prediction tools.</p><p><strong>Conclusion: </strong>The BBBper web tool is freely available at http://bbbper.mdu.ac.in.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273328174241007060331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Neuronal disorders have affected more than 15% of the world's population, signifying the importance of continued design and development of drugs that can cross the Blood-Brain Barrier (BBB).

Background: BBB limits the permeability of external compounds by 98% to maintain and regulate brain homeostasis. Hence, BBB permeability prediction is vital to predict the activity of a drug-like substance.

Objective: Here, we report about developing BBBper (Blood-Brain Barrier permeability prediction) using machine learning tool.

Method: A supervised machine learning-based online tool, based on physicochemical parameters to predict the BBB permeability of given chemical compounds was developed. The user-end webpage was developed in HTML and linked with back-end server by a python script to run user queries and results.

Result: BBBper uses a random forest algorithm at the back end, showing 97% accuracy on the external dataset, compared to 70-92% accuracy of currently available web-based BBB permeability prediction tools.

Conclusion: The BBBper web tool is freely available at http://bbbper.mdu.ac.in.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BBBper:基于机器学习的血脑屏障 (BBB) 渗透性预测在线工具。
目的:神经元疾病已影响到全球超过15%的人口,这表明继续设计和开发可穿过血脑屏障(BBB)的药物非常重要:背景:血脑屏障对外部化合物的渗透性有 98% 的限制,以维持和调节大脑的平衡。因此,BBB渗透性预测对于预测类药物的活性至关重要。目的:在此,我们报告了利用机器学习工具开发BBBper(血脑屏障渗透性预测)的情况:方法:我们开发了一种基于机器学习的在线监督工具,以理化参数为基础,预测特定化合物的血脑屏障渗透性。用户端网页使用 HTML 开发,并通过 python 脚本与后端服务器连接,以运行用户查询和结果:结果:BBBper 在后端使用随机森林算法,在外部数据集上显示出 97% 的准确率,而目前可用的基于网络的 BBB 渗透性预测工具的准确率为 70-92%:BBBper 网络工具可在 http://bbbper.mdu.ac.in 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parkinson's Disease: Unravelling the Medicinal Perspectives and Recent Developments of Heterocyclic Monoamine Oxidase-B Inhibitors. Enhanced Neuroprotection in Experiment Multiple Sclerosis through Combined Rosiglitazone and Probiotic-Loaded Solid Lipid Nanoparticles: Modulation of Cellular Signaling Pathways. Parkinson's Disease: A Progressive Neurodegenerative Disorder and Structure-Activity Relationship of MAO Inhibitor Scaffolds as an Important Therapeutic Regimen. Exploring Therapeutic Strategies: The Relationship between Metabolic Disorders and FOXO Signalling in Alzheimer's Disease. Proposed Hypothesis of TWEAK/Fn14 Receptor Modulation in Autism Spectrum Disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1